import glob from venv import create import gradio as gr from typing import Any from dotenv import load_dotenv import requests from griptape.structures import Agent from griptape.tasks import PromptTask from griptape.drivers import ( LocalConversationMemoryDriver, GriptapeCloudStructureRunDriver, LocalFileManagerDriver, LocalStructureRunDriver, GriptapeCloudConversationMemoryDriver, ) from griptape.memory.structure import ConversationMemory from griptape.tools import StructureRunTool, FileManagerTool from griptape.rules import Rule, Ruleset from griptape.configs.drivers import AnthropicDriversConfig from griptape.configs import Defaults import time import os from urllib.parse import urljoin # Load environment variables load_dotenv() Defaults.drivers_config = AnthropicDriversConfig() base_url = "https://cloud.griptape.ai" headers_api = { "Authorization": f"Bearer {os.environ['GT_CLOUD_API_KEY']}", "Content-Type": "application/json", } threads = {} def create_thread_id(session_id: str) -> str: if not session_id in threads: params = { "name": session_id, "messages": [], } response = requests.post( url=urljoin(base_url, "/api/threads"), headers=headers_api, json=params ) response.raise_for_status() thread_id = response.json()["thread_id"] threads[session_id] = thread_id return thread_id else: return threads[session_id] # Create an agent that will create a prompt that can be used as input for the query agent from the Griptape Cloud. # Function that logs user history - adds to history parameter of Gradio # TODO: Figure out the exact use of this function def user(user_message, history): history.append([user_message, None]) return ("", history) # Function that logs bot history - adds to the history parameter of Gradio # TODO: Figure out the exact use of this function def bot(history): response = send_message(history[-1][0]) history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.005) yield history def create_prompt_task(session_id: str, message: str) -> PromptTask: return PromptTask( f""" Re-structure the values to form a query from the user's questions: '{message}' and the input value from the conversation memory. Leave out attributes that aren't important to the user: """, ) def build_talk_agent(session_id: str, message: str) -> Agent: create_thread_id(session_id) ruleset = Ruleset( name="Local Gradio Agent", rules=[ Rule( value="You are responsible for structuring a user's questions into a specific format for a query." ), Rule( value="""You ask the user follow-up questions to fill in missing information for: years experience, location, role, skills, expected salary, availability, past companies, past projects, show reel details """ ), Rule( value="Return the current query structure and any questions to fill in missing information." ), ], ) return Agent( conversation_memory=ConversationMemory( conversation_memory_driver=GriptapeCloudConversationMemoryDriver( thread_id=threads[session_id], ) ), tasks=[create_prompt_task(session_id, message)], rulesets=[ruleset], ) # Creates an agent for each run # The agent uses local memory, which it differentiates between by session_hash. def build_agent(session_id: str, message: str, kbs:str) -> Agent: create_thread_id(session_id) ruleset = Ruleset( name="Local Gradio Agent", rules=[ Rule( value="You are responsible for structuring a user's questions into a query and then querying." ), Rule( value="Only return the result of the query, do not provide additional commentary." ), Rule(value="Only perform one task at a time."), Rule( value="Do not perform the query unless the user has said 'Done' with formulating." ), Rule( value="Only perform the query as one string argument." ), Rule( value="If you reformulate the query, then you must ask the user if they are 'Done' again." ), Rule( value="If the user says they want to start over, then you must delete the conversation memory file." ), ], ) query_client = StructureRunTool( name="QueryResumeSearcher", description=f"""Use it to search for a candidate with the query. Add this as another argument after the input: {kbs} """, driver=GriptapeCloudStructureRunDriver( structure_id=os.getenv("GT_STRUCTURE_ID"), api_key=os.getenv("GT_CLOUD_API_KEY"), structure_run_wait_time_interval=3, structure_run_max_wait_time_attempts=30, ), ) talk_client = StructureRunTool( name="FormulateQueryFromUser", description="Used to formulate a query from the user's input.", driver=LocalStructureRunDriver( structure_factory_fn=lambda: build_talk_agent(session_id, message), ), ) return Agent( conversation_memory=ConversationMemory( conversation_memory_driver=GriptapeCloudConversationMemoryDriver( thread_id=threads[session_id], ) ), tools=[talk_client, query_client], rulesets=[ruleset], ) def send_message(message: str, history, knowledge_bases, request: gr.Request) -> Any: if request: session_hash = request.session_hash agent = build_agent(session_hash, message, str(knowledge_bases)) response = agent.run(message) return response.output.value with gr.Blocks() as demo: knowledge_bases = gr.CheckboxGroup(choices=["skills","demographics","linked_in","showreels"]) chatbot = gr.ChatInterface(fn=send_message, additional_inputs=knowledge_bases) demo.launch(auth=(os.environ.get("GRADIO_USERNAME"), os.environ.get("GRADIO_PASSWORD"))) # demo.launch(share=True) # Set it back to empty when a session is done # Is there a better way? threads = {}