Spaces:
Runtime error
Runtime error
File size: 4,884 Bytes
88c96b4 a9acd44 88c96b4 a9acd44 88c96b4 7b49d27 88c96b4 7b49d27 88c96b4 7b49d27 ac50f75 88c96b4 f1741c6 88c96b4 7b49d27 88c96b4 e386583 88c96b4 c519e63 6f4f63b c519e63 6f4f63b 88c96b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from collections import defaultdict
import gradio as gr
from optimum.onnxruntime import ORTModelForCausalLM
import itertools
import re
user_token = "<User>"
eos_token = "<EOS>"
bos_token = "<BOS>"
bot_token = "<Assistant>"
max_context_length = 750
def is_english_word(tested_string):
pattern = re.compile(r"^[a-zA-Z]+$")
return pattern.match(tested_string) is not None
def format(history):
prompt = bos_token
for idx, txt in enumerate(history):
if idx % 2 == 0:
prompt += f"{user_token}{txt}{eos_token}"
else:
prompt += f"{bot_token}{txt}"
prompt += bot_token
print(prompt)
return prompt
def gradio(model, tokenizer):
def response(
user_input,
chat_history,
top_k,
top_p,
temperature,
repetition_penalty,
no_repeat_ngram_size,
):
history = list(itertools.chain(*chat_history))
history.append(user_input)
prompt = format(history)
input_ids = tokenizer.encode(
prompt,
return_tensors="pt",
add_special_tokens=False,
)[:, -max_context_length:]
prompt_length = input_ids.shape[1]
beam_output = model.generate(
input_ids,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=250,
num_beams=1, # with cpu
top_k=top_k,
top_p=top_p,
no_repeat_ngram_size=no_repeat_ngram_size,
temperature=temperature,
repetition_penalty=repetition_penalty,
early_stopping=True,
do_sample=True
)
output = beam_output[0][prompt_length:]
tokens = tokenizer.convert_ids_to_tokens(output)
for i, token in enumerate(tokens[:-1]):
if is_english_word(token) and is_english_word(tokens[i + 1]):
tokens[i] = token + " "
text = "".join(tokens).replace("##", "").replace("[UNK]", "").strip()
return text
bot = gr.Chatbot(show_copy_button=True, show_share_button=True)
with gr.Blocks() as demo:
gr.Markdown("GPT2 chatbot | Powered by nlp-greyfoss")
with gr.Accordion("Parameters in generation", open=False):
with gr.Row():
top_k = gr.Slider(
2.0,
100.0,
label="top_k",
step=1,
value=50,
info="Limit the number of candidate tokens considered during decoding.",
)
top_p = gr.Slider(
0.1,
1.0,
label="top_p",
value=0.9,
info="Control the diversity of the output by selecting tokens with cumulative probabilities up to the Top-P threshold.",
)
temperature = gr.Slider(
0.1,
2.0,
label="temperature",
value=0.9,
info="Control the randomness of the generated text. A higher temperature results in more diverse and unpredictable outputs, while a lower temperature produces more conservative and coherent text.",
)
repetition_penalty = gr.Slider(
0.1,
2.0,
label="repetition_penalty",
value=1.2,
info="Discourage the model from generating repetitive tokens in a sequence.",
)
no_repeat_ngram_size = gr.Slider(
0,
100,
label="no_repeat_ngram_size",
step=1,
value=5,
info="Prevent the model from generating sequences of n consecutive tokens that have already been generated in the context. ",
)
gr.ChatInterface(
response,
chatbot=bot,
additional_inputs=[
top_k,
top_p,
temperature,
repetition_penalty,
no_repeat_ngram_size,
],
stop_btn = "🛑 Stop",
retry_btn = "🔄 Regenerate",
undo_btn = "↩️ Remove last turn",
clear_btn = "➕ New conversation",
examples=[[
"帮我生成一句英文,描述春天的美好。",
"推荐一些好看的电影",
"Write a poem for me."
]]
)
demo.queue().launch()
tokenizer = AutoTokenizer.from_pretrained("greyfoss/gpt2-chatbot-chinese")
model = ORTModelForCausalLM.from_pretrained("greyfoss/gpt2-chatbot-chinese", export=True)
gradio(model, tokenizer)
|