Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,149 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
from collections import defaultdict
|
4 |
import gradio as gr
|
5 |
+
from optimum.onnxruntime import ORTModelForCausalLM
|
6 |
|
7 |
+
|
8 |
+
import itertools
|
9 |
+
import re
|
10 |
+
|
11 |
+
|
12 |
+
user_token = "<User>"
|
13 |
+
eos_token = "<EOS>"
|
14 |
+
bos_token = "<BOS>"
|
15 |
+
bot_token = "<Assistant>"
|
16 |
+
|
17 |
+
|
18 |
+
def is_english_word(tested_string):
|
19 |
+
pattern = re.compile(r"^[a-zA-Z]+$")
|
20 |
+
return pattern.match(tested_string) is not None
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def format(history):
|
25 |
+
prompt = bos_token
|
26 |
+
|
27 |
+
for idx, txt in enumerate(history):
|
28 |
+
if idx % 2 == 0:
|
29 |
+
prompt += f"{user_token}{txt}{eos_token}"
|
30 |
+
else:
|
31 |
+
prompt += f"{bot_token}{txt}"
|
32 |
+
prompt += bot_token
|
33 |
+
print(prompt)
|
34 |
+
return prompt
|
35 |
+
|
36 |
+
def gradio(model, tokenizer):
|
37 |
+
def response(
|
38 |
+
user_input,
|
39 |
+
chat_history,
|
40 |
+
top_k,
|
41 |
+
top_p,
|
42 |
+
temperature,
|
43 |
+
repetition_penalty,
|
44 |
+
no_repeat_ngram_size,
|
45 |
+
):
|
46 |
+
history = list(itertools.chain(*chat_history))
|
47 |
+
history.append(user_input)
|
48 |
+
|
49 |
+
prompt = format(history)
|
50 |
+
|
51 |
+
input_ids = tokenizer.encode(
|
52 |
+
prompt,
|
53 |
+
return_tensors="pt",
|
54 |
+
add_special_tokens=False,
|
55 |
+
)
|
56 |
+
|
57 |
+
prompt_length = input_ids.shape[1]
|
58 |
+
|
59 |
+
beam_output = model.generate(
|
60 |
+
input_ids,
|
61 |
+
pad_token_id=tokenizer.pad_token_id,
|
62 |
+
max_new_tokens=255,
|
63 |
+
# num_beams=3,
|
64 |
+
top_k=top_k,
|
65 |
+
top_p=top_p,
|
66 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
67 |
+
temperature=temperature,
|
68 |
+
repetition_penalty=repetition_penalty,
|
69 |
+
early_stopping=True,
|
70 |
+
# do_sample=True,
|
71 |
+
)
|
72 |
+
output = beam_output[0][prompt_length:]
|
73 |
+
|
74 |
+
tokens = tokenizer.convert_ids_to_tokens(output)
|
75 |
+
for i, token in enumerate(tokens[:-1]):
|
76 |
+
if is_english_word(token) and is_english_word(tokens[i + 1]):
|
77 |
+
tokens[i] = token + " "
|
78 |
+
text = "".join(tokens).replace("##", "").replace("<UNK>", "").strip()
|
79 |
+
|
80 |
+
return text
|
81 |
+
|
82 |
+
bot = gr.Chatbot(scale=8)
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("GPT2 chatbot | Powered by nlp-greyfoss")
|
86 |
+
|
87 |
+
with gr.Accordion("Parameters in generation", open=False):
|
88 |
+
with gr.Row():
|
89 |
+
top_k = gr.Slider(
|
90 |
+
2.0,
|
91 |
+
100.0,
|
92 |
+
label="top_k",
|
93 |
+
step=1,
|
94 |
+
value=50,
|
95 |
+
info="Limit the number of candidate tokens considered during decoding.",
|
96 |
+
)
|
97 |
+
top_p = gr.Slider(
|
98 |
+
0.1,
|
99 |
+
1.0,
|
100 |
+
label="top_p",
|
101 |
+
value=0.9,
|
102 |
+
info="Control the diversity of the output by selecting tokens with cumulative probabilities up to the Top-P threshold.",
|
103 |
+
)
|
104 |
+
temperature = gr.Slider(
|
105 |
+
0.1,
|
106 |
+
2.0,
|
107 |
+
label="temperature",
|
108 |
+
value=0.9,
|
109 |
+
info="Control the randomness of the generated text. A higher temperature results in more diverse and unpredictable outputs, while a lower temperature produces more conservative and coherent text.",
|
110 |
+
)
|
111 |
+
repetition_penalty = gr.Slider(
|
112 |
+
0.1,
|
113 |
+
2.0,
|
114 |
+
label="repetition_penalty",
|
115 |
+
value=1.2,
|
116 |
+
info="Discourage the model from generating repetitive tokens in a sequence.",
|
117 |
+
)
|
118 |
+
no_repeat_ngram_size = gr.Slider(
|
119 |
+
0,
|
120 |
+
100,
|
121 |
+
label="no_repeat_ngram_size",
|
122 |
+
step=1,
|
123 |
+
value=5,
|
124 |
+
info="Prevent the model from generating sequences of n consecutive tokens that have already been generated in the context. ",
|
125 |
+
)
|
126 |
+
|
127 |
+
gr.ChatInterface(
|
128 |
+
response,
|
129 |
+
chatbot=bot,
|
130 |
+
fill_vertical_space=True,
|
131 |
+
additional_inputs=[
|
132 |
+
top_k,
|
133 |
+
top_p,
|
134 |
+
temperature,
|
135 |
+
repetition_penalty,
|
136 |
+
no_repeat_ngram_size,
|
137 |
+
],
|
138 |
+
)
|
139 |
+
|
140 |
+
demo.queue().launch()
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained("greyfoss/gpt2-chatbot-chinese")
|
146 |
+
|
147 |
+
model = ORTModelForCausalLM.from_pretrained("greyfoss/gpt2-chatbot-chinese", export=True)
|
148 |
+
|
149 |
+
gradio(model, tokenizer)
|