|
import os, sys |
|
import glob, itertools |
|
import pandas as pd |
|
|
|
WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) |
|
|
|
if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): |
|
print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') |
|
sys.exit(-1) |
|
|
|
|
|
def load_langs(path): |
|
with open(path) as fr: |
|
langs = [l.strip() for l in fr] |
|
return langs |
|
|
|
|
|
|
|
def load_sentences(raw_data, split, direction): |
|
src, tgt = direction.split('-') |
|
src_path = f"{raw_data}/{split}.{direction}.{src}" |
|
tgt_path = f"{raw_data}/{split}.{direction}.{tgt}" |
|
if os.path.exists(src_path) and os.path.exists(tgt_path): |
|
return [(src, open(src_path).read().splitlines()), (tgt, open(tgt_path).read().splitlines())] |
|
else: |
|
return [] |
|
|
|
def swap_direction(d): |
|
src, tgt = d.split('-') |
|
return f'{tgt}-{src}' |
|
|
|
def get_all_test_data(raw_data, directions, split='test'): |
|
test_data = [ |
|
x |
|
for dd in directions |
|
for d in [dd, swap_direction(dd)] |
|
for x in load_sentences(raw_data, split, d) |
|
] |
|
|
|
all_test_data = {} |
|
for lang, d in test_data: |
|
for s in d: |
|
s = s.strip() |
|
lgs = all_test_data.get(s, set()) |
|
lgs.add(lang) |
|
all_test_data[s] = lgs |
|
return all_test_data, test_data |
|
|
|
def check_train_sentences(raw_data, direction, all_test_data, mess_up_train={}): |
|
src, tgt = direction.split('-') |
|
tgt_path = f"{raw_data}/train.{direction}.{tgt}" |
|
src_path = f"{raw_data}/train.{direction}.{src}" |
|
print(f'check training data in {raw_data}/train.{direction}') |
|
size = 0 |
|
if not os.path.exists(tgt_path) or not os.path.exists(src_path): |
|
return mess_up_train, size |
|
with open(src_path) as f, open(tgt_path) as g: |
|
for src_line, tgt_line in zip(f, g): |
|
s = src_line.strip() |
|
t = tgt_line.strip() |
|
size += 1 |
|
if s in all_test_data: |
|
langs = mess_up_train.get(s, set()) |
|
langs.add(direction) |
|
mess_up_train[s] = langs |
|
if t in all_test_data: |
|
langs = mess_up_train.get(t, set()) |
|
langs.add(direction) |
|
mess_up_train[t] = langs |
|
return mess_up_train, size |
|
|
|
def check_train_all(raw_data, directions, all_test_data): |
|
mess_up_train = {} |
|
data_sizes = {} |
|
for direction in directions: |
|
_, size = check_train_sentences(raw_data, direction, all_test_data, mess_up_train) |
|
data_sizes[direction] = size |
|
return mess_up_train, data_sizes |
|
|
|
def count_train_in_other_set(mess_up_train): |
|
train_in_others = [(direction, s) for s, directions in mess_up_train.items() for direction in directions] |
|
counts = {} |
|
for direction, s in train_in_others: |
|
counts[direction] = counts.get(direction, 0) + 1 |
|
return counts |
|
|
|
def train_size_if_remove_in_otherset(data_sizes, mess_up_train): |
|
counts_in_other = count_train_in_other_set(mess_up_train) |
|
remain_sizes = [] |
|
for direction, count in counts_in_other.items(): |
|
remain_sizes.append((direction, data_sizes[direction] - count, data_sizes[direction], count, 100 * count / data_sizes[direction] )) |
|
return remain_sizes |
|
|
|
|
|
def remove_messed_up_sentences(raw_data, direction, mess_up_train, mess_up_train_pairs, corrected_langs): |
|
split = 'train' |
|
src_lang, tgt_lang = direction.split('-') |
|
|
|
tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}" |
|
src = f"{raw_data}/{split}.{direction}.{src_lang}" |
|
print(f'working on {direction}: ', src, tgt) |
|
if not os.path.exists(tgt) or not os.path.exists(src) : |
|
return |
|
|
|
corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}" |
|
corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}" |
|
line_num = 0 |
|
keep_num = 0 |
|
with open(src, encoding='utf8',) as fsrc, \ |
|
open(tgt, encoding='utf8',) as ftgt, \ |
|
open(corrected_src, 'w', encoding='utf8') as fsrc_corrected, \ |
|
open(corrected_tgt, 'w', encoding='utf8') as ftgt_corrected: |
|
for s, t in zip(fsrc, ftgt): |
|
s = s.strip() |
|
t = t.strip() |
|
if t not in mess_up_train \ |
|
and s not in mess_up_train \ |
|
and (s, t) not in mess_up_train_pairs \ |
|
and (t, s) not in mess_up_train_pairs: |
|
corrected_langs.add(direction) |
|
print(s, file=fsrc_corrected) |
|
print(t, file=ftgt_corrected) |
|
keep_num += 1 |
|
line_num += 1 |
|
if line_num % 1000 == 0: |
|
print(f'completed {line_num} lines', end='\r') |
|
return line_num, keep_num |
|
|
|
|
|
|
|
|
|
def merge_valid_test_messup(mess_up_train_valid, mess_up_train_test): |
|
merged_mess = [] |
|
for s in set(list(mess_up_train_valid.keys()) + list(mess_up_train_test.keys())): |
|
if not s: |
|
continue |
|
valid = mess_up_train_valid.get(s, set()) |
|
test = mess_up_train_test.get(s, set()) |
|
merged_mess.append((s, valid | test)) |
|
return dict(merged_mess) |
|
|
|
|
|
|
|
|
|
def check_train_pairs(raw_data, direction, all_test_data, mess_up_train={}): |
|
src, tgt = direction.split('-') |
|
|
|
path1 = f"{raw_data}/train.{src}-{tgt}.{src}" |
|
path2 = f"{raw_data}/train.{src}-{tgt}.{tgt}" |
|
if not os.path.exists(path1) or not os.path.exists(path2) : |
|
return |
|
|
|
with open(path1) as f1, open(path2) as f2: |
|
for src_line, tgt_line in zip(f1, f2): |
|
s = src_line.strip() |
|
t = tgt_line.strip() |
|
if (s, t) in all_test_data or (t, s) in all_test_data: |
|
langs = mess_up_train.get( (s, t), set()) |
|
langs.add(src) |
|
langs.add(tgt) |
|
mess_up_train[(s, t)] = langs |
|
|
|
|
|
def load_pairs(raw_data, split, direction): |
|
src, tgt = direction.split('-') |
|
src_f = f"{raw_data}/{split}.{direction}.{src}" |
|
tgt_f = f"{raw_data}/{split}.{direction}.{tgt}" |
|
if tgt != 'en_XX': |
|
src_f, tgt_f = tgt_f, src_f |
|
if os.path.exists(src_f) and os.path.exists(tgt_f): |
|
return list(zip(open(src_f).read().splitlines(), |
|
open(tgt_f).read().splitlines(), |
|
)) |
|
else: |
|
return [] |
|
|
|
|
|
def get_messed_up_test_pairs(split, directions): |
|
test_pairs = [ |
|
(d, load_pairs(raw_data, split, d)) |
|
for d in directions |
|
] |
|
|
|
all_test_pairs = {} |
|
for direction, d in test_pairs: |
|
src, tgt = direction.split('-') |
|
for s in d: |
|
langs = all_test_pairs.get(s, set()) |
|
langs.add(src) |
|
langs.add(tgt) |
|
all_test_pairs[s] = langs |
|
mess_up_train_pairs = {} |
|
for direction in directions: |
|
check_train_pairs(raw_data, direction, all_test_pairs, mess_up_train_pairs) |
|
return all_test_pairs, mess_up_train_pairs |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'--from-folder', |
|
required=True, |
|
type=str) |
|
parser.add_argument( |
|
'--to-folder', |
|
required=True, |
|
type=str) |
|
parser.add_argument( |
|
'--directions', |
|
default=None, |
|
type=str) |
|
|
|
|
|
args = parser.parse_args() |
|
raw_data = args.from_folder |
|
to_folder = args.to_folder |
|
os.makedirs(to_folder, exist_ok=True) |
|
|
|
if args.directions: |
|
directions = args.directions.split(',') |
|
else: |
|
raw_files = itertools.chain( |
|
glob.glob(f'{raw_data}/train*'), |
|
glob.glob(f'{raw_data}/valid*'), |
|
glob.glob(f'{raw_data}/test*'), |
|
) |
|
directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files] |
|
print('working on directions: ', directions) |
|
|
|
|
|
|
|
|
|
|
|
all_test_data, test_data = get_all_test_data(raw_data, directions, 'test') |
|
print('==loaded test data==') |
|
all_valid_data, valid_data = get_all_test_data(raw_data, directions, 'valid') |
|
print('==loaded valid data==') |
|
all_valid_test_data = merge_valid_test_messup(all_test_data, all_valid_data) |
|
mess_up_train, data_sizes = check_train_all(raw_data, directions, all_valid_test_data) |
|
print('training messing up with valid, test data:', len(mess_up_train)) |
|
data_situation = train_size_if_remove_in_otherset(data_sizes, mess_up_train) |
|
df = pd.DataFrame(data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent']) |
|
df.sort_values('remove_percent', ascending=False) |
|
df.to_csv(f'{raw_data}/clean_summary.tsv', sep='\t') |
|
print(f'projected data clean summary in: {raw_data}/clean_summary.tsv') |
|
|
|
|
|
all_test_pairs, mess_up_test_train_pairs = get_messed_up_test_pairs('test', directions) |
|
all_valid_pairs, mess_up_valid_train_pairs = get_messed_up_test_pairs('valid', directions) |
|
|
|
all_messed_pairs = set(mess_up_test_train_pairs.keys()).union(set(mess_up_valid_train_pairs.keys())) |
|
corrected_directions = set() |
|
|
|
real_data_situation = [] |
|
for direction in directions: |
|
org_size, new_size = remove_messed_up_sentences(raw_data, direction, mess_up_train, all_messed_pairs, corrected_directions) |
|
if org_size == 0: |
|
print(f"{direction} has size 0") |
|
continue |
|
real_data_situation.append( |
|
(direction, new_size, org_size, org_size - new_size, (org_size - new_size) / org_size * 100) |
|
) |
|
print('corrected directions: ', corrected_directions) |
|
df = pd.DataFrame(real_data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent']) |
|
df.sort_values('remove_percent', ascending=False) |
|
df.to_csv(f'{raw_data}/actual_clean_summary.tsv', sep='\t') |
|
print(f'actual data clean summary (which can be different from the projected one because of duplications) in: {raw_data}/actual_clean_summary.tsv') |
|
|
|
import shutil |
|
for direction in directions: |
|
src_lang, tgt_lang = direction.split('-') |
|
for split in ['train', 'valid', 'test']: |
|
|
|
if direction in corrected_directions and split == 'train': |
|
continue |
|
tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}" |
|
src = f"{raw_data}/{split}.{direction}.{src_lang}" |
|
if not (os.path.exists(src) and os.path.exists(tgt)): |
|
continue |
|
corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}" |
|
corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}" |
|
print(f'copying {src} to {corrected_src}') |
|
shutil.copyfile(src, corrected_src) |
|
print(f'copying {tgt} to {corrected_tgt}') |
|
shutil.copyfile(tgt, corrected_tgt) |
|
|
|
print('completed') |