File size: 11,158 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os, sys
import glob, itertools
import pandas as pd
WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
sys.exit(-1)
def load_langs(path):
with open(path) as fr:
langs = [l.strip() for l in fr]
return langs
def load_sentences(raw_data, split, direction):
src, tgt = direction.split('-')
src_path = f"{raw_data}/{split}.{direction}.{src}"
tgt_path = f"{raw_data}/{split}.{direction}.{tgt}"
if os.path.exists(src_path) and os.path.exists(tgt_path):
return [(src, open(src_path).read().splitlines()), (tgt, open(tgt_path).read().splitlines())]
else:
return []
def swap_direction(d):
src, tgt = d.split('-')
return f'{tgt}-{src}'
def get_all_test_data(raw_data, directions, split='test'):
test_data = [
x
for dd in directions
for d in [dd, swap_direction(dd)]
for x in load_sentences(raw_data, split, d)
]
# all_test_data = {s for _, d in test_data for s in d}
all_test_data = {}
for lang, d in test_data:
for s in d:
s = s.strip()
lgs = all_test_data.get(s, set())
lgs.add(lang)
all_test_data[s] = lgs
return all_test_data, test_data
def check_train_sentences(raw_data, direction, all_test_data, mess_up_train={}):
src, tgt = direction.split('-')
tgt_path = f"{raw_data}/train.{direction}.{tgt}"
src_path = f"{raw_data}/train.{direction}.{src}"
print(f'check training data in {raw_data}/train.{direction}')
size = 0
if not os.path.exists(tgt_path) or not os.path.exists(src_path):
return mess_up_train, size
with open(src_path) as f, open(tgt_path) as g:
for src_line, tgt_line in zip(f, g):
s = src_line.strip()
t = tgt_line.strip()
size += 1
if s in all_test_data:
langs = mess_up_train.get(s, set())
langs.add(direction)
mess_up_train[s] = langs
if t in all_test_data:
langs = mess_up_train.get(t, set())
langs.add(direction)
mess_up_train[t] = langs
return mess_up_train, size
def check_train_all(raw_data, directions, all_test_data):
mess_up_train = {}
data_sizes = {}
for direction in directions:
_, size = check_train_sentences(raw_data, direction, all_test_data, mess_up_train)
data_sizes[direction] = size
return mess_up_train, data_sizes
def count_train_in_other_set(mess_up_train):
train_in_others = [(direction, s) for s, directions in mess_up_train.items() for direction in directions]
counts = {}
for direction, s in train_in_others:
counts[direction] = counts.get(direction, 0) + 1
return counts
def train_size_if_remove_in_otherset(data_sizes, mess_up_train):
counts_in_other = count_train_in_other_set(mess_up_train)
remain_sizes = []
for direction, count in counts_in_other.items():
remain_sizes.append((direction, data_sizes[direction] - count, data_sizes[direction], count, 100 * count / data_sizes[direction] ))
return remain_sizes
def remove_messed_up_sentences(raw_data, direction, mess_up_train, mess_up_train_pairs, corrected_langs):
split = 'train'
src_lang, tgt_lang = direction.split('-')
tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}"
src = f"{raw_data}/{split}.{direction}.{src_lang}"
print(f'working on {direction}: ', src, tgt)
if not os.path.exists(tgt) or not os.path.exists(src) :
return
corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}"
corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}"
line_num = 0
keep_num = 0
with open(src, encoding='utf8',) as fsrc, \
open(tgt, encoding='utf8',) as ftgt, \
open(corrected_src, 'w', encoding='utf8') as fsrc_corrected, \
open(corrected_tgt, 'w', encoding='utf8') as ftgt_corrected:
for s, t in zip(fsrc, ftgt):
s = s.strip()
t = t.strip()
if t not in mess_up_train \
and s not in mess_up_train \
and (s, t) not in mess_up_train_pairs \
and (t, s) not in mess_up_train_pairs:
corrected_langs.add(direction)
print(s, file=fsrc_corrected)
print(t, file=ftgt_corrected)
keep_num += 1
line_num += 1
if line_num % 1000 == 0:
print(f'completed {line_num} lines', end='\r')
return line_num, keep_num
##########
def merge_valid_test_messup(mess_up_train_valid, mess_up_train_test):
merged_mess = []
for s in set(list(mess_up_train_valid.keys()) + list(mess_up_train_test.keys())):
if not s:
continue
valid = mess_up_train_valid.get(s, set())
test = mess_up_train_test.get(s, set())
merged_mess.append((s, valid | test))
return dict(merged_mess)
#########
def check_train_pairs(raw_data, direction, all_test_data, mess_up_train={}):
src, tgt = direction.split('-')
#a hack; TODO: check the reversed directions
path1 = f"{raw_data}/train.{src}-{tgt}.{src}"
path2 = f"{raw_data}/train.{src}-{tgt}.{tgt}"
if not os.path.exists(path1) or not os.path.exists(path2) :
return
with open(path1) as f1, open(path2) as f2:
for src_line, tgt_line in zip(f1, f2):
s = src_line.strip()
t = tgt_line.strip()
if (s, t) in all_test_data or (t, s) in all_test_data:
langs = mess_up_train.get( (s, t), set())
langs.add(src)
langs.add(tgt)
mess_up_train[(s, t)] = langs
def load_pairs(raw_data, split, direction):
src, tgt = direction.split('-')
src_f = f"{raw_data}/{split}.{direction}.{src}"
tgt_f = f"{raw_data}/{split}.{direction}.{tgt}"
if tgt != 'en_XX':
src_f, tgt_f = tgt_f, src_f
if os.path.exists(src_f) and os.path.exists(tgt_f):
return list(zip(open(src_f).read().splitlines(),
open(tgt_f).read().splitlines(),
))
else:
return []
# skip_langs = ['cs_CZ', 'en_XX', 'tl_XX', 'tr_TR']
def get_messed_up_test_pairs(split, directions):
test_pairs = [
(d, load_pairs(raw_data, split, d))
for d in directions
]
# all_test_data = {s for _, d in test_data for s in d}
all_test_pairs = {}
for direction, d in test_pairs:
src, tgt = direction.split('-')
for s in d:
langs = all_test_pairs.get(s, set())
langs.add(src)
langs.add(tgt)
all_test_pairs[s] = langs
mess_up_train_pairs = {}
for direction in directions:
check_train_pairs(raw_data, direction, all_test_pairs, mess_up_train_pairs)
return all_test_pairs, mess_up_train_pairs
if __name__ == "__main__":
#######
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--from-folder',
required=True,
type=str)
parser.add_argument(
'--to-folder',
required=True,
type=str)
parser.add_argument(
'--directions',
default=None,
type=str)
args = parser.parse_args()
raw_data = args.from_folder
to_folder = args.to_folder
os.makedirs(to_folder, exist_ok=True)
if args.directions:
directions = args.directions.split(',')
else:
raw_files = itertools.chain(
glob.glob(f'{raw_data}/train*'),
glob.glob(f'{raw_data}/valid*'),
glob.glob(f'{raw_data}/test*'),
)
directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files]
print('working on directions: ', directions)
##########
all_test_data, test_data = get_all_test_data(raw_data, directions, 'test')
print('==loaded test data==')
all_valid_data, valid_data = get_all_test_data(raw_data, directions, 'valid')
print('==loaded valid data==')
all_valid_test_data = merge_valid_test_messup(all_test_data, all_valid_data)
mess_up_train, data_sizes = check_train_all(raw_data, directions, all_valid_test_data)
print('training messing up with valid, test data:', len(mess_up_train))
data_situation = train_size_if_remove_in_otherset(data_sizes, mess_up_train)
df = pd.DataFrame(data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent'])
df.sort_values('remove_percent', ascending=False)
df.to_csv(f'{raw_data}/clean_summary.tsv', sep='\t')
print(f'projected data clean summary in: {raw_data}/clean_summary.tsv')
# correct the dataset:
all_test_pairs, mess_up_test_train_pairs = get_messed_up_test_pairs('test', directions)
all_valid_pairs, mess_up_valid_train_pairs = get_messed_up_test_pairs('valid', directions)
all_messed_pairs = set(mess_up_test_train_pairs.keys()).union(set(mess_up_valid_train_pairs.keys()))
corrected_directions = set()
real_data_situation = []
for direction in directions:
org_size, new_size = remove_messed_up_sentences(raw_data, direction, mess_up_train, all_messed_pairs, corrected_directions)
if org_size == 0:
print(f"{direction} has size 0")
continue
real_data_situation.append(
(direction, new_size, org_size, org_size - new_size, (org_size - new_size) / org_size * 100)
)
print('corrected directions: ', corrected_directions)
df = pd.DataFrame(real_data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent'])
df.sort_values('remove_percent', ascending=False)
df.to_csv(f'{raw_data}/actual_clean_summary.tsv', sep='\t')
print(f'actual data clean summary (which can be different from the projected one because of duplications) in: {raw_data}/actual_clean_summary.tsv')
import shutil
for direction in directions:
src_lang, tgt_lang = direction.split('-')
for split in ['train', 'valid', 'test']:
# copying valid, test and uncorrected train
if direction in corrected_directions and split == 'train':
continue
tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}"
src = f"{raw_data}/{split}.{direction}.{src_lang}"
if not (os.path.exists(src) and os.path.exists(tgt)):
continue
corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}"
corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}"
print(f'copying {src} to {corrected_src}')
shutil.copyfile(src, corrected_src)
print(f'copying {tgt} to {corrected_tgt}')
shutil.copyfile(tgt, corrected_tgt)
print('completed') |