Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
from PIL import Image | |
import face_recognition | |
from scipy.spatial import distance | |
import gradio as gr | |
class ImageToGroup(object): | |
def __init__(self, filename, path): | |
self.filename = filename | |
self.path = path | |
self.embeddings = self.extract_embeddings() | |
def extract_embeddings(self): | |
try: | |
img = Image.open(self.path) | |
img = img.convert("RGB") # Convert image to RGB | |
img = img.resize((800, 800)) # Resize the image to improve performance | |
img = np.array(img) | |
face_locations = face_recognition.face_locations(img) | |
if len(face_locations) == 0: | |
return [] # No face found in the image | |
# Generate multiple face encodings with jitter | |
face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations] | |
return face_encodings | |
except Exception as e: | |
print(f"Error extracting embeddings from {self.path}: {e}") | |
return [] | |
def are_similar(self, other_embeddings, threshold=0.6): | |
# Calculate the Euclidean distance between two embeddings | |
for other_embedding in other_embeddings: | |
for _ in self.embeddings: | |
dist = distance.euclidean(_, other_embedding) | |
if dist < threshold: | |
return True | |
return False | |
def group_images(input_files): | |
images_to_group = [ImageToGroup(os.path.basename(file), file) for file in input_files] | |
# Group images into clusters based on face embeddings | |
grouped_images = {} | |
for image in images_to_group: | |
if not image.embeddings: | |
continue # Skip images with no faces | |
for group_images in grouped_images.values(): | |
if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method | |
group_images.append(image) | |
break | |
else: | |
# Use the first embedding of the current image as the key for the new group | |
grouped_images[tuple(image.embeddings[0])] = [image] | |
# Convert grouped images to PIL Image objects | |
group_images_pil = [] | |
for i, (_, group_images) in enumerate(grouped_images.items()): | |
for image in group_images: | |
pil_image = Image.open(image.path) | |
group_images_pil.append((pil_image, f"Group {i+1}")) | |
return group_images_pil | |
# Interface for Gradio | |
input_directory = gr.File(label="Input Directory",file_count="multiple") | |
gallery = gr.Gallery(label="Grouped Images") | |
gr.Interface( | |
fn=group_images, | |
inputs=[input_directory], | |
outputs=gallery | |
).launch(share=True) |