gr3yshadow commited on
Commit
dd2bcb8
·
verified ·
1 Parent(s): f37bac4

Upload folder using huggingface_hub

Browse files
Files changed (8) hide show
  1. requirements.txt +5 -0
  2. .gitignore +5 -0
  3. README.md +2 -8
  4. app.py +89 -0
  5. face_grouping.py +73 -0
  6. main.py +75 -0
  7. req.py +11 -0
  8. updated1.py +73 -0
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ numpy
2
+ PIL
3
+ face_recognition
4
+ streamlit
5
+ scipy
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ venv/
2
+ images/
3
+ flagged/
4
+ __pycache__/
5
+ ```
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Image Grouping Based On Face Recognition
3
- emoji: 🏃
4
- colorFrom: yellow
5
- colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 4.19.2
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Image_Grouping_based_on_Face_Recognition
3
+ app_file: face_grouping.py
 
 
4
  sdk: gradio
5
  sdk_version: 4.19.2
 
 
6
  ---
 
 
app.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import shutil
4
+ import numpy as np
5
+ from PIL import Image
6
+ import face_recognition
7
+ from scipy.spatial import distance
8
+ import tempfile
9
+
10
+ class ImageToGroup(object):
11
+ def __init__(self, filename, path):
12
+ self.filename = filename
13
+ self.path = path
14
+ self.embeddings = self.extract_embeddings()
15
+
16
+ def extract_embeddings(self):
17
+ img = face_recognition.load_image_file(self.path)
18
+ face_locations = face_recognition.face_locations(img)
19
+ if len(face_locations) == 0:
20
+ return [] # No face found in the image
21
+ face_encodings = [face_recognition.face_encodings(img, [face_location])[0] for face_location in face_locations]
22
+ return face_encodings
23
+
24
+ def are_similar(self, other_embeddings, threshold=0.6):
25
+ # Calculate the Euclidean distance between two embeddings
26
+ for other_embedding in other_embeddings:
27
+ for self_embedding in self.embeddings:
28
+ dist = distance.euclidean(self_embedding, other_embedding)
29
+ if dist < threshold:
30
+ return True
31
+ return False
32
+
33
+ def main(images, output_dir):
34
+ images_to_group = [ImageToGroup(os.path.basename(image_path), image_path) for image_path in images]
35
+
36
+ # Group images into clusters based on face embeddings
37
+ grouped_images = {}
38
+ for image in images_to_group:
39
+ if not image.embeddings:
40
+ continue # Skip images with no faces
41
+ for embedding in image.embeddings:
42
+ found_group = False
43
+ for group_key, group_images in grouped_images.items():
44
+ if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
45
+ group_images.append(image)
46
+ found_group = True
47
+ break
48
+ if not found_group:
49
+ grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
50
+
51
+ # Save grouped images
52
+ for i, (embedding, group_images) in enumerate(grouped_images.items()):
53
+ group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
54
+ os.makedirs(group_dir, exist_ok=True)
55
+ for image in group_images:
56
+ image_filename = os.path.basename(image.path)
57
+ destination_path = os.path.join(group_dir, image_filename)
58
+ shutil.copy(image.path, destination_path)
59
+
60
+ def app():
61
+ st.title('Image Grouping based on Face Recognition')
62
+
63
+ uploaded_files = st.file_uploader('Upload images:', type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
64
+
65
+ if st.button('Group Images'):
66
+ if uploaded_files:
67
+ images = []
68
+ for uploaded_file in uploaded_files:
69
+ tfile = tempfile.NamedTemporaryFile(delete=False)
70
+ tfile.write(uploaded_file.read())
71
+ images.append(tfile.name)
72
+
73
+ output_dir = tempfile.mkdtemp()
74
+ main(images, output_dir)
75
+
76
+ st.success('Images grouped successfully.')
77
+
78
+ # Display the grouped images
79
+ for group_dir in os.listdir(output_dir):
80
+ st.header(f'Group: {group_dir}')
81
+ for image_file in os.listdir(os.path.join(output_dir, group_dir)):
82
+ image = Image.open(os.path.join(output_dir, group_dir, image_file))
83
+ st.image(image)
84
+
85
+ else:
86
+ st.error('Please upload images.')
87
+
88
+ if __name__ == '__main__':
89
+ app()
face_grouping.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from PIL import Image
4
+ import face_recognition
5
+ from scipy.spatial import distance
6
+ import gradio as gr
7
+
8
+ class ImageToGroup(object):
9
+ def __init__(self, filename, path):
10
+ self.filename = filename
11
+ self.path = path
12
+ self.embeddings = self.extract_embeddings()
13
+
14
+ def extract_embeddings(self):
15
+ try:
16
+ img = Image.open(self.path)
17
+ img = img.convert("RGB") # Convert image to RGB
18
+ img = img.resize((800, 800)) # Resize the image to improve performance
19
+ img = np.array(img)
20
+ face_locations = face_recognition.face_locations(img)
21
+ if len(face_locations) == 0:
22
+ return [] # No face found in the image
23
+ # Generate multiple face encodings with jitter
24
+ face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations]
25
+ return face_encodings
26
+ except Exception as e:
27
+ print(f"Error extracting embeddings from {self.path}: {e}")
28
+ return []
29
+
30
+ def are_similar(self, other_embeddings, threshold=0.6):
31
+ # Calculate the Euclidean distance between two embeddings
32
+ for other_embedding in other_embeddings:
33
+ for _ in self.embeddings:
34
+ dist = distance.euclidean(_, other_embedding)
35
+ if dist < threshold:
36
+ return True
37
+ return False
38
+
39
+ def group_images(input_files):
40
+ images_to_group = [ImageToGroup(os.path.basename(file), file) for file in input_files]
41
+
42
+ # Group images into clusters based on face embeddings
43
+ grouped_images = {}
44
+ for image in images_to_group:
45
+ if not image.embeddings:
46
+ continue # Skip images with no faces
47
+ for group_images in grouped_images.values():
48
+ if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
49
+ group_images.append(image)
50
+ break
51
+ else:
52
+ # Use the first embedding of the current image as the key for the new group
53
+ grouped_images[tuple(image.embeddings[0])] = [image]
54
+
55
+ # Convert grouped images to PIL Image objects
56
+ group_images_pil = []
57
+ for i, (_, group_images) in enumerate(grouped_images.items()):
58
+ for image in group_images:
59
+ pil_image = Image.open(image.path)
60
+ group_images_pil.append((pil_image, f"Group {i+1}"))
61
+
62
+ return group_images_pil
63
+
64
+ # Interface for Gradio
65
+ input_directory = gr.File(label="Input Directory",file_count="multiple")
66
+
67
+ gallery = gr.Gallery(label="Grouped Images")
68
+
69
+ gr.Interface(
70
+ fn=group_images,
71
+ inputs=[input_directory],
72
+ outputs=gallery
73
+ ).launch(share=True)
main.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
+ import os
4
+ import shutil
5
+ import numpy as np
6
+ from PIL import Image
7
+ import face_recognition
8
+ from scipy.spatial import distance
9
+
10
+ app = FastAPI()
11
+
12
+ class ImageToGroup(object):
13
+ def __init__(self, filename, path):
14
+ self.filename = filename
15
+ self.path = path
16
+ self.embeddings = self.extract_embeddings()
17
+
18
+ def extract_embeddings(self):
19
+ img = face_recognition.load_image_file(self.path)
20
+ face_locations = face_recognition.face_locations(img)
21
+ if len(face_locations) == 0:
22
+ return [] # No face found in the image
23
+ # Generate multiple face encodings with jitter
24
+ face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations]
25
+ return face_encodings
26
+
27
+ def are_similar(self, other_embeddings, threshold=0.6):
28
+ # Calculate the Euclidean distance between two embeddings
29
+ for other_embedding in other_embeddings:
30
+ for self_embedding in self.embeddings:
31
+ dist = distance.euclidean(self_embedding, other_embedding)
32
+ if dist < threshold:
33
+ return True
34
+ return False
35
+
36
+ def main(input_dir, output_dir):
37
+ filenames = os.listdir(input_dir)
38
+ images_to_group = [ImageToGroup(filename, os.path.join(input_dir, filename)) for filename in filenames]
39
+
40
+ # Group images into clusters based on face embeddings
41
+ grouped_images = {}
42
+ for image in images_to_group:
43
+ if not image.embeddings:
44
+ continue # Skip images with no faces
45
+ for embedding in image.embeddings:
46
+ found_group = False
47
+ for group_key, group_images in grouped_images.items():
48
+ if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
49
+ group_images.append(image)
50
+ found_group = True
51
+ break
52
+ if not found_group:
53
+ grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
54
+
55
+ # Save grouped images
56
+ for i, (embedding, group_images) in enumerate(grouped_images.items()):
57
+ group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
58
+ os.makedirs(group_dir, exist_ok=True)
59
+ for image in group_images:
60
+ image_filename = os.path.basename(image.path)
61
+ destination_path = os.path.join(group_dir, image_filename)
62
+ shutil.copy(image.path, destination_path)
63
+
64
+ class GroupImagesRequest(BaseModel):
65
+ input_dir: str
66
+ output_dir: str
67
+
68
+ @app.post("/group_images")
69
+ async def group_images(request: GroupImagesRequest):
70
+ if not os.path.isdir(request.input_dir):
71
+ raise HTTPException(status_code=400, detail="Input directory does not exist")
72
+ if not os.path.isdir(request.output_dir):
73
+ os.makedirs(request.output_dir)
74
+ main(request.input_dir, request.output_dir)
75
+ return {"message": "Images grouped successfully"}
req.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+
3
+ response = requests.post(
4
+ "http://192.168.100:8000/group_images",
5
+ json={
6
+ "input_dir": "/home/greyshadow/Desktop/source/Grouping/images",
7
+ "output_dir": "/home/greyshadow/Desktop/source/Grouping/result"
8
+ }
9
+ )
10
+
11
+ print(response.json())
updated1.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import numpy as np
4
+ from PIL import Image
5
+ import face_recognition
6
+ from scipy.spatial import distance
7
+
8
+ class ImageToGroup(object):
9
+ def __init__(self, filename, path):
10
+ self.filename = filename
11
+ self.path = path
12
+ self.embeddings = self.extract_embeddings()
13
+
14
+ def extract_embeddings(self):
15
+ try:
16
+ img = Image.open(self.path)
17
+ img = img.resize((800, 800)) # Resize the image to improve performance
18
+ img = np.array(img)
19
+ face_locations = face_recognition.face_locations(img)
20
+ if len(face_locations) == 0:
21
+ return [] # No face found in the image
22
+ # Generate multiple face encodings with jitter
23
+ face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations]
24
+ return face_encodings
25
+ except Exception as e:
26
+ print(f"Error extracting embeddings from {self.path}: {e}")
27
+ return []
28
+
29
+ def are_similar(self, other_embeddings, threshold=0.6):
30
+ # Calculate the Euclidean distance between two embeddings
31
+ for other_embedding in other_embeddings:
32
+ for self_embedding in self.embeddings:
33
+ dist = distance.euclidean(self_embedding, other_embedding)
34
+ if dist < threshold:
35
+ return True
36
+ return False
37
+
38
+ def main(input_dir, output_dir):
39
+ filenames = os.listdir(input_dir)
40
+ images_to_group = [ImageToGroup(filename, os.path.join(input_dir, filename)) for filename in filenames]
41
+
42
+ # Group images into clusters based on face embeddings
43
+ grouped_images = {}
44
+ for image in images_to_group:
45
+ if not image.embeddings:
46
+ continue # Skip images with no faces
47
+ for embedding in image.embeddings:
48
+ found_group = False
49
+ for group_key, group_images in grouped_images.items():
50
+ if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
51
+ group_images.append(image)
52
+ found_group = True
53
+ break
54
+ if not found_group:
55
+ grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
56
+
57
+ # Save grouped images
58
+ for i, (embedding, group_images) in enumerate(grouped_images.items()):
59
+ group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
60
+ try:
61
+ os.makedirs(group_dir, exist_ok=True)
62
+ for image in group_images:
63
+ image_filename = os.path.basename(image.path)
64
+ destination_path = os.path.join(group_dir, image_filename)
65
+ shutil.copy(image.path, destination_path)
66
+ except Exception as e:
67
+ print(f"Error saving images to {group_dir}: {e}")
68
+
69
+ if __name__ == '__main__':
70
+ import sys
71
+ input_dir = sys.argv[1]
72
+ output_dir = sys.argv[2]
73
+ main(input_dir, output_dir)