Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- requirements.txt +5 -0
- .gitignore +5 -0
- README.md +2 -8
- app.py +89 -0
- face_grouping.py +73 -0
- main.py +75 -0
- req.py +11 -0
- updated1.py +73 -0
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
PIL
|
3 |
+
face_recognition
|
4 |
+
streamlit
|
5 |
+
scipy
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
images/
|
3 |
+
flagged/
|
4 |
+
__pycache__/
|
5 |
+
```
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Image_Grouping_based_on_Face_Recognition
|
3 |
+
app_file: face_grouping.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 4.19.2
|
|
|
|
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import face_recognition
|
7 |
+
from scipy.spatial import distance
|
8 |
+
import tempfile
|
9 |
+
|
10 |
+
class ImageToGroup(object):
|
11 |
+
def __init__(self, filename, path):
|
12 |
+
self.filename = filename
|
13 |
+
self.path = path
|
14 |
+
self.embeddings = self.extract_embeddings()
|
15 |
+
|
16 |
+
def extract_embeddings(self):
|
17 |
+
img = face_recognition.load_image_file(self.path)
|
18 |
+
face_locations = face_recognition.face_locations(img)
|
19 |
+
if len(face_locations) == 0:
|
20 |
+
return [] # No face found in the image
|
21 |
+
face_encodings = [face_recognition.face_encodings(img, [face_location])[0] for face_location in face_locations]
|
22 |
+
return face_encodings
|
23 |
+
|
24 |
+
def are_similar(self, other_embeddings, threshold=0.6):
|
25 |
+
# Calculate the Euclidean distance between two embeddings
|
26 |
+
for other_embedding in other_embeddings:
|
27 |
+
for self_embedding in self.embeddings:
|
28 |
+
dist = distance.euclidean(self_embedding, other_embedding)
|
29 |
+
if dist < threshold:
|
30 |
+
return True
|
31 |
+
return False
|
32 |
+
|
33 |
+
def main(images, output_dir):
|
34 |
+
images_to_group = [ImageToGroup(os.path.basename(image_path), image_path) for image_path in images]
|
35 |
+
|
36 |
+
# Group images into clusters based on face embeddings
|
37 |
+
grouped_images = {}
|
38 |
+
for image in images_to_group:
|
39 |
+
if not image.embeddings:
|
40 |
+
continue # Skip images with no faces
|
41 |
+
for embedding in image.embeddings:
|
42 |
+
found_group = False
|
43 |
+
for group_key, group_images in grouped_images.items():
|
44 |
+
if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
|
45 |
+
group_images.append(image)
|
46 |
+
found_group = True
|
47 |
+
break
|
48 |
+
if not found_group:
|
49 |
+
grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
|
50 |
+
|
51 |
+
# Save grouped images
|
52 |
+
for i, (embedding, group_images) in enumerate(grouped_images.items()):
|
53 |
+
group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
|
54 |
+
os.makedirs(group_dir, exist_ok=True)
|
55 |
+
for image in group_images:
|
56 |
+
image_filename = os.path.basename(image.path)
|
57 |
+
destination_path = os.path.join(group_dir, image_filename)
|
58 |
+
shutil.copy(image.path, destination_path)
|
59 |
+
|
60 |
+
def app():
|
61 |
+
st.title('Image Grouping based on Face Recognition')
|
62 |
+
|
63 |
+
uploaded_files = st.file_uploader('Upload images:', type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
64 |
+
|
65 |
+
if st.button('Group Images'):
|
66 |
+
if uploaded_files:
|
67 |
+
images = []
|
68 |
+
for uploaded_file in uploaded_files:
|
69 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
70 |
+
tfile.write(uploaded_file.read())
|
71 |
+
images.append(tfile.name)
|
72 |
+
|
73 |
+
output_dir = tempfile.mkdtemp()
|
74 |
+
main(images, output_dir)
|
75 |
+
|
76 |
+
st.success('Images grouped successfully.')
|
77 |
+
|
78 |
+
# Display the grouped images
|
79 |
+
for group_dir in os.listdir(output_dir):
|
80 |
+
st.header(f'Group: {group_dir}')
|
81 |
+
for image_file in os.listdir(os.path.join(output_dir, group_dir)):
|
82 |
+
image = Image.open(os.path.join(output_dir, group_dir, image_file))
|
83 |
+
st.image(image)
|
84 |
+
|
85 |
+
else:
|
86 |
+
st.error('Please upload images.')
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
app()
|
face_grouping.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import face_recognition
|
5 |
+
from scipy.spatial import distance
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
class ImageToGroup(object):
|
9 |
+
def __init__(self, filename, path):
|
10 |
+
self.filename = filename
|
11 |
+
self.path = path
|
12 |
+
self.embeddings = self.extract_embeddings()
|
13 |
+
|
14 |
+
def extract_embeddings(self):
|
15 |
+
try:
|
16 |
+
img = Image.open(self.path)
|
17 |
+
img = img.convert("RGB") # Convert image to RGB
|
18 |
+
img = img.resize((800, 800)) # Resize the image to improve performance
|
19 |
+
img = np.array(img)
|
20 |
+
face_locations = face_recognition.face_locations(img)
|
21 |
+
if len(face_locations) == 0:
|
22 |
+
return [] # No face found in the image
|
23 |
+
# Generate multiple face encodings with jitter
|
24 |
+
face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations]
|
25 |
+
return face_encodings
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error extracting embeddings from {self.path}: {e}")
|
28 |
+
return []
|
29 |
+
|
30 |
+
def are_similar(self, other_embeddings, threshold=0.6):
|
31 |
+
# Calculate the Euclidean distance between two embeddings
|
32 |
+
for other_embedding in other_embeddings:
|
33 |
+
for _ in self.embeddings:
|
34 |
+
dist = distance.euclidean(_, other_embedding)
|
35 |
+
if dist < threshold:
|
36 |
+
return True
|
37 |
+
return False
|
38 |
+
|
39 |
+
def group_images(input_files):
|
40 |
+
images_to_group = [ImageToGroup(os.path.basename(file), file) for file in input_files]
|
41 |
+
|
42 |
+
# Group images into clusters based on face embeddings
|
43 |
+
grouped_images = {}
|
44 |
+
for image in images_to_group:
|
45 |
+
if not image.embeddings:
|
46 |
+
continue # Skip images with no faces
|
47 |
+
for group_images in grouped_images.values():
|
48 |
+
if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
|
49 |
+
group_images.append(image)
|
50 |
+
break
|
51 |
+
else:
|
52 |
+
# Use the first embedding of the current image as the key for the new group
|
53 |
+
grouped_images[tuple(image.embeddings[0])] = [image]
|
54 |
+
|
55 |
+
# Convert grouped images to PIL Image objects
|
56 |
+
group_images_pil = []
|
57 |
+
for i, (_, group_images) in enumerate(grouped_images.items()):
|
58 |
+
for image in group_images:
|
59 |
+
pil_image = Image.open(image.path)
|
60 |
+
group_images_pil.append((pil_image, f"Group {i+1}"))
|
61 |
+
|
62 |
+
return group_images_pil
|
63 |
+
|
64 |
+
# Interface for Gradio
|
65 |
+
input_directory = gr.File(label="Input Directory",file_count="multiple")
|
66 |
+
|
67 |
+
gallery = gr.Gallery(label="Grouped Images")
|
68 |
+
|
69 |
+
gr.Interface(
|
70 |
+
fn=group_images,
|
71 |
+
inputs=[input_directory],
|
72 |
+
outputs=gallery
|
73 |
+
).launch(share=True)
|
main.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import face_recognition
|
8 |
+
from scipy.spatial import distance
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
class ImageToGroup(object):
|
13 |
+
def __init__(self, filename, path):
|
14 |
+
self.filename = filename
|
15 |
+
self.path = path
|
16 |
+
self.embeddings = self.extract_embeddings()
|
17 |
+
|
18 |
+
def extract_embeddings(self):
|
19 |
+
img = face_recognition.load_image_file(self.path)
|
20 |
+
face_locations = face_recognition.face_locations(img)
|
21 |
+
if len(face_locations) == 0:
|
22 |
+
return [] # No face found in the image
|
23 |
+
# Generate multiple face encodings with jitter
|
24 |
+
face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations]
|
25 |
+
return face_encodings
|
26 |
+
|
27 |
+
def are_similar(self, other_embeddings, threshold=0.6):
|
28 |
+
# Calculate the Euclidean distance between two embeddings
|
29 |
+
for other_embedding in other_embeddings:
|
30 |
+
for self_embedding in self.embeddings:
|
31 |
+
dist = distance.euclidean(self_embedding, other_embedding)
|
32 |
+
if dist < threshold:
|
33 |
+
return True
|
34 |
+
return False
|
35 |
+
|
36 |
+
def main(input_dir, output_dir):
|
37 |
+
filenames = os.listdir(input_dir)
|
38 |
+
images_to_group = [ImageToGroup(filename, os.path.join(input_dir, filename)) for filename in filenames]
|
39 |
+
|
40 |
+
# Group images into clusters based on face embeddings
|
41 |
+
grouped_images = {}
|
42 |
+
for image in images_to_group:
|
43 |
+
if not image.embeddings:
|
44 |
+
continue # Skip images with no faces
|
45 |
+
for embedding in image.embeddings:
|
46 |
+
found_group = False
|
47 |
+
for group_key, group_images in grouped_images.items():
|
48 |
+
if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
|
49 |
+
group_images.append(image)
|
50 |
+
found_group = True
|
51 |
+
break
|
52 |
+
if not found_group:
|
53 |
+
grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
|
54 |
+
|
55 |
+
# Save grouped images
|
56 |
+
for i, (embedding, group_images) in enumerate(grouped_images.items()):
|
57 |
+
group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
|
58 |
+
os.makedirs(group_dir, exist_ok=True)
|
59 |
+
for image in group_images:
|
60 |
+
image_filename = os.path.basename(image.path)
|
61 |
+
destination_path = os.path.join(group_dir, image_filename)
|
62 |
+
shutil.copy(image.path, destination_path)
|
63 |
+
|
64 |
+
class GroupImagesRequest(BaseModel):
|
65 |
+
input_dir: str
|
66 |
+
output_dir: str
|
67 |
+
|
68 |
+
@app.post("/group_images")
|
69 |
+
async def group_images(request: GroupImagesRequest):
|
70 |
+
if not os.path.isdir(request.input_dir):
|
71 |
+
raise HTTPException(status_code=400, detail="Input directory does not exist")
|
72 |
+
if not os.path.isdir(request.output_dir):
|
73 |
+
os.makedirs(request.output_dir)
|
74 |
+
main(request.input_dir, request.output_dir)
|
75 |
+
return {"message": "Images grouped successfully"}
|
req.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
response = requests.post(
|
4 |
+
"http://192.168.100:8000/group_images",
|
5 |
+
json={
|
6 |
+
"input_dir": "/home/greyshadow/Desktop/source/Grouping/images",
|
7 |
+
"output_dir": "/home/greyshadow/Desktop/source/Grouping/result"
|
8 |
+
}
|
9 |
+
)
|
10 |
+
|
11 |
+
print(response.json())
|
updated1.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import face_recognition
|
6 |
+
from scipy.spatial import distance
|
7 |
+
|
8 |
+
class ImageToGroup(object):
|
9 |
+
def __init__(self, filename, path):
|
10 |
+
self.filename = filename
|
11 |
+
self.path = path
|
12 |
+
self.embeddings = self.extract_embeddings()
|
13 |
+
|
14 |
+
def extract_embeddings(self):
|
15 |
+
try:
|
16 |
+
img = Image.open(self.path)
|
17 |
+
img = img.resize((800, 800)) # Resize the image to improve performance
|
18 |
+
img = np.array(img)
|
19 |
+
face_locations = face_recognition.face_locations(img)
|
20 |
+
if len(face_locations) == 0:
|
21 |
+
return [] # No face found in the image
|
22 |
+
# Generate multiple face encodings with jitter
|
23 |
+
face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations]
|
24 |
+
return face_encodings
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error extracting embeddings from {self.path}: {e}")
|
27 |
+
return []
|
28 |
+
|
29 |
+
def are_similar(self, other_embeddings, threshold=0.6):
|
30 |
+
# Calculate the Euclidean distance between two embeddings
|
31 |
+
for other_embedding in other_embeddings:
|
32 |
+
for self_embedding in self.embeddings:
|
33 |
+
dist = distance.euclidean(self_embedding, other_embedding)
|
34 |
+
if dist < threshold:
|
35 |
+
return True
|
36 |
+
return False
|
37 |
+
|
38 |
+
def main(input_dir, output_dir):
|
39 |
+
filenames = os.listdir(input_dir)
|
40 |
+
images_to_group = [ImageToGroup(filename, os.path.join(input_dir, filename)) for filename in filenames]
|
41 |
+
|
42 |
+
# Group images into clusters based on face embeddings
|
43 |
+
grouped_images = {}
|
44 |
+
for image in images_to_group:
|
45 |
+
if not image.embeddings:
|
46 |
+
continue # Skip images with no faces
|
47 |
+
for embedding in image.embeddings:
|
48 |
+
found_group = False
|
49 |
+
for group_key, group_images in grouped_images.items():
|
50 |
+
if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
|
51 |
+
group_images.append(image)
|
52 |
+
found_group = True
|
53 |
+
break
|
54 |
+
if not found_group:
|
55 |
+
grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
|
56 |
+
|
57 |
+
# Save grouped images
|
58 |
+
for i, (embedding, group_images) in enumerate(grouped_images.items()):
|
59 |
+
group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
|
60 |
+
try:
|
61 |
+
os.makedirs(group_dir, exist_ok=True)
|
62 |
+
for image in group_images:
|
63 |
+
image_filename = os.path.basename(image.path)
|
64 |
+
destination_path = os.path.join(group_dir, image_filename)
|
65 |
+
shutil.copy(image.path, destination_path)
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error saving images to {group_dir}: {e}")
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
import sys
|
71 |
+
input_dir = sys.argv[1]
|
72 |
+
output_dir = sys.argv[2]
|
73 |
+
main(input_dir, output_dir)
|