gr3yshadow's picture
Upload folder using huggingface_hub
dd2bcb8 verified
import streamlit as st
import os
import shutil
import numpy as np
from PIL import Image
import face_recognition
from scipy.spatial import distance
import tempfile
class ImageToGroup(object):
def __init__(self, filename, path):
self.filename = filename
self.path = path
self.embeddings = self.extract_embeddings()
def extract_embeddings(self):
img = face_recognition.load_image_file(self.path)
face_locations = face_recognition.face_locations(img)
if len(face_locations) == 0:
return [] # No face found in the image
face_encodings = [face_recognition.face_encodings(img, [face_location])[0] for face_location in face_locations]
return face_encodings
def are_similar(self, other_embeddings, threshold=0.6):
# Calculate the Euclidean distance between two embeddings
for other_embedding in other_embeddings:
for self_embedding in self.embeddings:
dist = distance.euclidean(self_embedding, other_embedding)
if dist < threshold:
return True
return False
def main(images, output_dir):
images_to_group = [ImageToGroup(os.path.basename(image_path), image_path) for image_path in images]
# Group images into clusters based on face embeddings
grouped_images = {}
for image in images_to_group:
if not image.embeddings:
continue # Skip images with no faces
for embedding in image.embeddings:
found_group = False
for group_key, group_images in grouped_images.items():
if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
group_images.append(image)
found_group = True
break
if not found_group:
grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
# Save grouped images
for i, (embedding, group_images) in enumerate(grouped_images.items()):
group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
os.makedirs(group_dir, exist_ok=True)
for image in group_images:
image_filename = os.path.basename(image.path)
destination_path = os.path.join(group_dir, image_filename)
shutil.copy(image.path, destination_path)
def app():
st.title('Image Grouping based on Face Recognition')
uploaded_files = st.file_uploader('Upload images:', type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
if st.button('Group Images'):
if uploaded_files:
images = []
for uploaded_file in uploaded_files:
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
images.append(tfile.name)
output_dir = tempfile.mkdtemp()
main(images, output_dir)
st.success('Images grouped successfully.')
# Display the grouped images
for group_dir in os.listdir(output_dir):
st.header(f'Group: {group_dir}')
for image_file in os.listdir(os.path.join(output_dir, group_dir)):
image = Image.open(os.path.join(output_dir, group_dir, image_file))
st.image(image)
else:
st.error('Please upload images.')
if __name__ == '__main__':
app()