Spaces:
Runtime error
Runtime error
File size: 3,093 Bytes
dd2bcb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import os
import shutil
import numpy as np
from PIL import Image
import face_recognition
from scipy.spatial import distance
app = FastAPI()
class ImageToGroup(object):
def __init__(self, filename, path):
self.filename = filename
self.path = path
self.embeddings = self.extract_embeddings()
def extract_embeddings(self):
img = face_recognition.load_image_file(self.path)
face_locations = face_recognition.face_locations(img)
if len(face_locations) == 0:
return [] # No face found in the image
# Generate multiple face encodings with jitter
face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations]
return face_encodings
def are_similar(self, other_embeddings, threshold=0.6):
# Calculate the Euclidean distance between two embeddings
for other_embedding in other_embeddings:
for self_embedding in self.embeddings:
dist = distance.euclidean(self_embedding, other_embedding)
if dist < threshold:
return True
return False
def main(input_dir, output_dir):
filenames = os.listdir(input_dir)
images_to_group = [ImageToGroup(filename, os.path.join(input_dir, filename)) for filename in filenames]
# Group images into clusters based on face embeddings
grouped_images = {}
for image in images_to_group:
if not image.embeddings:
continue # Skip images with no faces
for embedding in image.embeddings:
found_group = False
for group_key, group_images in grouped_images.items():
if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method
group_images.append(image)
found_group = True
break
if not found_group:
grouped_images[tuple(embedding)] = [image] # Convert numpy.ndarray to a hashable type using tuple()
# Save grouped images
for i, (embedding, group_images) in enumerate(grouped_images.items()):
group_dir = os.path.join(output_dir, f"group_{i+1}") # Add +1 to the index to start from 1
os.makedirs(group_dir, exist_ok=True)
for image in group_images:
image_filename = os.path.basename(image.path)
destination_path = os.path.join(group_dir, image_filename)
shutil.copy(image.path, destination_path)
class GroupImagesRequest(BaseModel):
input_dir: str
output_dir: str
@app.post("/group_images")
async def group_images(request: GroupImagesRequest):
if not os.path.isdir(request.input_dir):
raise HTTPException(status_code=400, detail="Input directory does not exist")
if not os.path.isdir(request.output_dir):
os.makedirs(request.output_dir)
main(request.input_dir, request.output_dir)
return {"message": "Images grouped successfully"} |