Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,15 @@ import requests
|
|
3 |
|
4 |
# Hugging Face Inference API URL and Token
|
5 |
API_URL = "https://api-inference.huggingface.co/models/Organika/sdxl-detector"
|
6 |
-
API_TOKEN = st.secrets["HF_API_TOKEN"]
|
7 |
|
8 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
9 |
|
10 |
# Function to query the model
|
11 |
def query(image_bytes):
|
12 |
-
|
|
|
|
|
13 |
return response.json()
|
14 |
|
15 |
# Streamlit UI
|
@@ -17,18 +19,21 @@ st.title("AI Image Detector")
|
|
17 |
|
18 |
st.write("Upload an image, and we will check if it is AI-generated using the Hugging Face SDXL detector.")
|
19 |
|
20 |
-
# File uploader for user to upload image
|
21 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
22 |
|
23 |
if uploaded_file is not None:
|
24 |
# Display the uploaded image
|
25 |
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
26 |
-
|
27 |
st.write("Classifying...")
|
28 |
-
|
|
|
|
|
|
|
29 |
# Send the image to the model
|
30 |
-
result = query(
|
31 |
-
|
32 |
# Display the result
|
33 |
if "error" in result:
|
34 |
st.error(f"Error: {result['error']}")
|
|
|
3 |
|
4 |
# Hugging Face Inference API URL and Token
|
5 |
API_URL = "https://api-inference.huggingface.co/models/Organika/sdxl-detector"
|
6 |
+
API_TOKEN = st.secrets["HF_API_TOKEN"]
|
7 |
|
8 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
9 |
|
10 |
# Function to query the model
|
11 |
def query(image_bytes):
|
12 |
+
# Prepare the payload with binary image data
|
13 |
+
files = {"inputs": image_bytes}
|
14 |
+
response = requests.post(API_URL, headers=headers, files=files)
|
15 |
return response.json()
|
16 |
|
17 |
# Streamlit UI
|
|
|
19 |
|
20 |
st.write("Upload an image, and we will check if it is AI-generated using the Hugging Face SDXL detector.")
|
21 |
|
22 |
+
# File uploader for the user to upload an image
|
23 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
24 |
|
25 |
if uploaded_file is not None:
|
26 |
# Display the uploaded image
|
27 |
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
28 |
+
|
29 |
st.write("Classifying...")
|
30 |
+
|
31 |
+
# Read the uploaded file as bytes
|
32 |
+
image_bytes = uploaded_file.read() # Read the file as bytes
|
33 |
+
|
34 |
# Send the image to the model
|
35 |
+
result = query(image_bytes)
|
36 |
+
|
37 |
# Display the result
|
38 |
if "error" in result:
|
39 |
st.error(f"Error: {result['error']}")
|