Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
from io import BytesIO
|
4 |
|
5 |
# Hugging Face Inference API URL and Token
|
6 |
API_URL = "https://api-inference.huggingface.co/models/Organika/sdxl-detector"
|
@@ -8,6 +7,7 @@ API_TOKEN = st.secrets["HF_API_TOKEN"] # You'll store this in the Hugging Face
|
|
8 |
|
9 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
10 |
|
|
|
11 |
def query(image_bytes):
|
12 |
response = requests.post(API_URL, headers=headers, files={"inputs": image_bytes})
|
13 |
return response.json()
|
@@ -17,17 +17,17 @@ st.title("AI Image Detector")
|
|
17 |
|
18 |
st.write("Upload an image, and we will check if it is AI-generated using the Hugging Face SDXL detector.")
|
19 |
|
|
|
20 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
21 |
|
22 |
if uploaded_file is not None:
|
23 |
# Display the uploaded image
|
24 |
-
image =
|
25 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
26 |
|
27 |
st.write("Classifying...")
|
28 |
|
29 |
# Send the image to the model
|
30 |
-
result = query(
|
31 |
|
32 |
# Display the result
|
33 |
if "error" in result:
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
|
|
3 |
|
4 |
# Hugging Face Inference API URL and Token
|
5 |
API_URL = "https://api-inference.huggingface.co/models/Organika/sdxl-detector"
|
|
|
7 |
|
8 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
9 |
|
10 |
+
# Function to query the model
|
11 |
def query(image_bytes):
|
12 |
response = requests.post(API_URL, headers=headers, files={"inputs": image_bytes})
|
13 |
return response.json()
|
|
|
17 |
|
18 |
st.write("Upload an image, and we will check if it is AI-generated using the Hugging Face SDXL detector.")
|
19 |
|
20 |
+
# File uploader for user to upload image
|
21 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
22 |
|
23 |
if uploaded_file is not None:
|
24 |
# Display the uploaded image
|
25 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
|
|
26 |
|
27 |
st.write("Classifying...")
|
28 |
|
29 |
# Send the image to the model
|
30 |
+
result = query(uploaded_file) # Use the file object directly
|
31 |
|
32 |
# Display the result
|
33 |
if "error" in result:
|