Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
from io import BytesIO
|
4 |
+
|
5 |
+
# Hugging Face Inference API URL and Token
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/Organika/sdxl-detector"
|
7 |
+
API_TOKEN = st.secrets["HF_API_TOKEN"] # You'll store this in the Hugging Face secret
|
8 |
+
|
9 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
10 |
+
|
11 |
+
def query(image_bytes):
|
12 |
+
response = requests.post(API_URL, headers=headers, files={"inputs": image_bytes})
|
13 |
+
return response.json()
|
14 |
+
|
15 |
+
# Streamlit UI
|
16 |
+
st.title("AI Image Detector")
|
17 |
+
|
18 |
+
st.write("Upload an image, and we will check if it is AI-generated using the Hugging Face SDXL detector.")
|
19 |
+
|
20 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
# Display the uploaded image
|
24 |
+
image = uploaded_file.read()
|
25 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
26 |
+
|
27 |
+
st.write("Classifying...")
|
28 |
+
|
29 |
+
# Send the image to the model
|
30 |
+
result = query(image)
|
31 |
+
|
32 |
+
# Display the result
|
33 |
+
if "error" in result:
|
34 |
+
st.error(f"Error: {result['error']}")
|
35 |
+
else:
|
36 |
+
label = result[0]["label"]
|
37 |
+
if label == "AI-generated":
|
38 |
+
st.success("This image is AI-generated.")
|
39 |
+
else:
|
40 |
+
st.success("This image is not AI-generated.")
|