sdxl-detector3 / app.py
goldenbrown's picture
Create app.py
c6a5000 verified
raw
history blame
1.28 kB
import streamlit as st
import requests
from io import BytesIO
# Hugging Face Inference API URL and Token
API_URL = "https://api-inference.huggingface.co/models/Organika/sdxl-detector"
API_TOKEN = st.secrets["HF_API_TOKEN"] # You'll store this in the Hugging Face secret
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def query(image_bytes):
response = requests.post(API_URL, headers=headers, files={"inputs": image_bytes})
return response.json()
# Streamlit UI
st.title("AI Image Detector")
st.write("Upload an image, and we will check if it is AI-generated using the Hugging Face SDXL detector.")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = uploaded_file.read()
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Send the image to the model
result = query(image)
# Display the result
if "error" in result:
st.error(f"Error: {result['error']}")
else:
label = result[0]["label"]
if label == "AI-generated":
st.success("This image is AI-generated.")
else:
st.success("This image is not AI-generated.")