gokilashree commited on
Commit
2b24f54
·
verified ·
1 Parent(s): d0fda9d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -8
app.py CHANGED
@@ -4,19 +4,19 @@ import requests
4
  import io
5
  from PIL import Image
6
  import os
7
- import torch # For text generation models
8
 
9
  # Load the translation model and tokenizer
10
  model_name = "facebook/mbart-large-50-many-to-one-mmt"
11
  tokenizer = MBart50Tokenizer.from_pretrained(model_name)
12
  model = MBartForConditionalGeneration.from_pretrained(model_name)
13
 
14
- # Use GPT-2 for text generation instead of restricted models
15
- text_gen_model = "gpt2"
16
  pipe = pipeline(
17
  "text-generation",
18
  model=text_gen_model,
19
- torch_dtype=torch.bfloat16,
20
  device_map="auto"
21
  )
22
 
@@ -32,8 +32,17 @@ def translate_and_generate_image(tamil_text):
32
  translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
33
  translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
34
 
35
- # Step 2: Generate descriptive English text using GPT-2
36
- generated_text = pipe(translated_text, max_length=50, num_return_sequences=1, truncation=True)[0]['generated_text']
 
 
 
 
 
 
 
 
 
37
 
38
  # Step 3: Use the generated English text to create an image
39
  def query(payload):
@@ -54,8 +63,8 @@ iface = gr.Interface(
54
  gr.Textbox(label="Generated Descriptive Text"),
55
  gr.Image(label="Generated Image")],
56
  title="Tamil to English Translation, Text Generation, and Image Creation",
57
- description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using GPT-2, and create an image using the generated text.",
58
  )
59
 
60
- # Launch Gradio app without `share=True` (Hugging Face Spaces already handles sharing)
61
  iface.launch()
 
4
  import io
5
  from PIL import Image
6
  import os
7
+ import torch
8
 
9
  # Load the translation model and tokenizer
10
  model_name = "facebook/mbart-large-50-many-to-one-mmt"
11
  tokenizer = MBart50Tokenizer.from_pretrained(model_name)
12
  model = MBartForConditionalGeneration.from_pretrained(model_name)
13
 
14
+ # Use GPT-Neo for more powerful text generation
15
+ text_gen_model = "EleutherAI/gpt-neo-1.3B" # Use EleutherAI/gpt-neo-2.7B for even better results
16
  pipe = pipeline(
17
  "text-generation",
18
  model=text_gen_model,
19
+ torch_dtype=torch.float32,
20
  device_map="auto"
21
  )
22
 
 
32
  translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
33
  translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
34
 
35
+ # Step 2: Generate descriptive English text using GPT-Neo
36
+ prompt = f"Create a detailed description based on the following text: {translated_text}"
37
+ generated_text = pipe(
38
+ prompt,
39
+ max_length=100,
40
+ num_return_sequences=1,
41
+ temperature=0.7,
42
+ top_p=0.9,
43
+ top_k=50,
44
+ truncation=True
45
+ )[0]['generated_text']
46
 
47
  # Step 3: Use the generated English text to create an image
48
  def query(payload):
 
63
  gr.Textbox(label="Generated Descriptive Text"),
64
  gr.Image(label="Generated Image")],
65
  title="Tamil to English Translation, Text Generation, and Image Creation",
66
+ description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using GPT-Neo, and create an image using the generated text.",
67
  )
68
 
69
+ # Launch Gradio app
70
  iface.launch()