gokilashree commited on
Commit
d0fda9d
·
verified ·
1 Parent(s): 60b3f5c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -1,4 +1,3 @@
1
- from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
2
  from transformers import MBartForConditionalGeneration, MBart50Tokenizer, pipeline
3
  import gradio as gr
4
  import requests
@@ -12,7 +11,7 @@ model_name = "facebook/mbart-large-50-many-to-one-mmt"
12
  tokenizer = MBart50Tokenizer.from_pretrained(model_name)
13
  model = MBartForConditionalGeneration.from_pretrained(model_name)
14
 
15
- # Use GPT-2 for text generation instead of LLaMA
16
  text_gen_model = "gpt2"
17
  pipe = pipeline(
18
  "text-generation",
@@ -23,7 +22,7 @@ pipe = pipeline(
23
 
24
  # Use the Hugging Face API key from environment variables for text-to-image model
25
  API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
26
- headers = {"Authorization": f"Bearer {os.getenv('hf_token')}"}
27
 
28
  # Define the translation, text generation, and image generation function
29
  def translate_and_generate_image(tamil_text):
@@ -34,7 +33,7 @@ def translate_and_generate_image(tamil_text):
34
  translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
35
 
36
  # Step 2: Generate descriptive English text using GPT-2
37
- generated_text = pipe(translated_text, max_length=100, num_return_sequences=1)[0]['generated_text']
38
 
39
  # Step 3: Use the generated English text to create an image
40
  def query(payload):
@@ -58,5 +57,5 @@ iface = gr.Interface(
58
  description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using GPT-2, and create an image using the generated text.",
59
  )
60
 
61
- # Launch Gradio app with a shareable link
62
- iface.launch(share=True)
 
 
1
  from transformers import MBartForConditionalGeneration, MBart50Tokenizer, pipeline
2
  import gradio as gr
3
  import requests
 
11
  tokenizer = MBart50Tokenizer.from_pretrained(model_name)
12
  model = MBartForConditionalGeneration.from_pretrained(model_name)
13
 
14
+ # Use GPT-2 for text generation instead of restricted models
15
  text_gen_model = "gpt2"
16
  pipe = pipeline(
17
  "text-generation",
 
22
 
23
  # Use the Hugging Face API key from environment variables for text-to-image model
24
  API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
25
+ headers = {"Authorization": f"Bearer {os.getenv('full_token')}"}
26
 
27
  # Define the translation, text generation, and image generation function
28
  def translate_and_generate_image(tamil_text):
 
33
  translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
34
 
35
  # Step 2: Generate descriptive English text using GPT-2
36
+ generated_text = pipe(translated_text, max_length=50, num_return_sequences=1, truncation=True)[0]['generated_text']
37
 
38
  # Step 3: Use the generated English text to create an image
39
  def query(payload):
 
57
  description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using GPT-2, and create an image using the generated text.",
58
  )
59
 
60
+ # Launch Gradio app without `share=True` (Hugging Face Spaces already handles sharing)
61
+ iface.launch()