Spaces:
Runtime error
Runtime error
from transformers import MBartForConditionalGeneration, MBart50Tokenizer | |
import gradio as gr | |
import requests | |
import io | |
from PIL import Image | |
import os | |
import time | |
# Load the translation model and tokenizer | |
model_name = "facebook/mbart-large-50-many-to-one-mmt" | |
tokenizer = MBart50Tokenizer.from_pretrained(model_name) | |
model = MBartForConditionalGeneration.from_pretrained(model_name) | |
# Use the Hugging Face API key from environment variables for text-to-image model | |
hf_api_key = os.getenv("full_token") | |
if hf_api_key is None: | |
raise ValueError("Hugging Face API key not found! Please set 'full_token' environment variable.") | |
else: | |
headers = {"Authorization": f"Bearer {hf_api_key}"} | |
# Define the text-to-image model URL (using a stable diffusion model) | |
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4" | |
# Function to generate an image using Hugging Face's text-to-image model | |
def generate_image_from_text(translated_text): | |
try: | |
print(f"Generating image from translated text: {translated_text}") | |
response = requests.post(API_URL, headers=headers, json={"inputs": translated_text}) | |
# Check if the response is successful | |
if response.status_code != 200: | |
print(f"Error generating image: {response.text}") | |
return None, f"Error generating image: {response.text}" | |
# Read and return the generated image | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print("Image generation completed.") | |
return image, None | |
except Exception as e: | |
print(f"Error during image generation: {e}") | |
return None, f"Error during image generation: {e}" | |
# Define the function to translate Tamil text and generate an image | |
def translate_and_generate_image(tamil_text): | |
# Step 1: Translate Tamil text to English using mbart-large-50 | |
try: | |
print("Translating Tamil text to English...") | |
tokenizer.src_lang = "ta_IN" | |
inputs = tokenizer(tamil_text, return_tensors="pt") | |
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) | |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] | |
print(f"Translation completed: {translated_text}") | |
except Exception as e: | |
return f"Error during translation: {e}", None | |
# Step 2: Directly generate an image using the translated English text | |
image, error_message = generate_image_from_text(translated_text) | |
if error_message: | |
return translated_text, error_message | |
return translated_text, image | |
# Gradio interface setup | |
iface = gr.Interface( | |
fn=translate_and_generate_image, | |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), | |
outputs=[gr.Textbox(label="Translated English Text"), | |
gr.Image(label="Generated Image")], | |
title="Tamil to English Translation and Image Creation", | |
description="Translate Tamil text to English using Facebook's mbart-large-50 model and create an image using the translated text.", | |
) | |
# Launch Gradio app without `share=True` | |
iface.launch() | |