Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import openai
|
2 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
3 |
import gradio as gr
|
4 |
import requests
|
@@ -7,13 +6,6 @@ from PIL import Image
|
|
7 |
import os
|
8 |
import time
|
9 |
|
10 |
-
# Set up your OpenAI API key (make sure it's stored as an environment variable)
|
11 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
12 |
-
if openai_api_key is None:
|
13 |
-
raise ValueError("OpenAI API key not found! Please set 'OPENAI_API_KEY' environment variable.")
|
14 |
-
else:
|
15 |
-
openai.api_key = openai_api_key
|
16 |
-
|
17 |
# Load the translation model and tokenizer
|
18 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
19 |
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
@@ -22,33 +14,34 @@ model = MBartForConditionalGeneration.from_pretrained(model_name)
|
|
22 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
23 |
hf_api_key = os.getenv("full_token")
|
24 |
if hf_api_key is None:
|
25 |
-
raise ValueError("Hugging Face API key not found! Please set '
|
26 |
else:
|
27 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
28 |
|
29 |
-
|
|
|
30 |
|
31 |
-
#
|
32 |
-
def
|
33 |
try:
|
34 |
-
print("Generating
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
print("
|
46 |
-
return
|
47 |
except Exception as e:
|
48 |
-
print(f"
|
49 |
-
return "Error
|
50 |
|
51 |
-
# Define the
|
52 |
def translate_and_generate_image(tamil_text):
|
53 |
# Step 1: Translate Tamil text to English using mbart-large-50
|
54 |
try:
|
@@ -59,47 +52,23 @@ def translate_and_generate_image(tamil_text):
|
|
59 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
60 |
print(f"Translation completed: {translated_text}")
|
61 |
except Exception as e:
|
62 |
-
return "Error during translation:
|
63 |
-
|
64 |
-
time.sleep(1) # Optional: Small delay to ensure sequential execution
|
65 |
|
66 |
-
# Step 2:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
generated_text = generate_with_gpt3(prompt)
|
71 |
-
print(f"Text generation completed: {generated_text}")
|
72 |
-
except Exception as e:
|
73 |
-
return translated_text, f"Error during text generation: {e}", None
|
74 |
-
|
75 |
-
time.sleep(1) # Optional: Small delay to ensure sequential execution
|
76 |
-
|
77 |
-
# Step 3: Use the generated English text to create an image
|
78 |
-
try:
|
79 |
-
print("Generating image from the generated descriptive text...")
|
80 |
-
def query(payload):
|
81 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
82 |
-
response.raise_for_status() # Raise error if request fails
|
83 |
-
return response.content
|
84 |
-
|
85 |
-
# Generate image using the descriptive text
|
86 |
-
image_bytes = query({"inputs": generated_text})
|
87 |
-
image = Image.open(io.BytesIO(image_bytes))
|
88 |
-
print("Image generation completed.")
|
89 |
-
except Exception as e:
|
90 |
-
return translated_text, generated_text, f"Error during image generation: {e}"
|
91 |
|
92 |
-
return translated_text,
|
93 |
|
94 |
# Gradio interface setup
|
95 |
iface = gr.Interface(
|
96 |
fn=translate_and_generate_image,
|
97 |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
98 |
outputs=[gr.Textbox(label="Translated English Text"),
|
99 |
-
gr.Textbox(label="Generated Descriptive Text"),
|
100 |
gr.Image(label="Generated Image")],
|
101 |
-
title="Tamil to English Translation
|
102 |
-
description="Translate Tamil text to English using Facebook's mbart-large-50 model
|
103 |
)
|
104 |
|
105 |
# Launch Gradio app without `share=True`
|
|
|
|
|
1 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
6 |
import os
|
7 |
import time
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Load the translation model and tokenizer
|
10 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
11 |
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
|
|
14 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
15 |
hf_api_key = os.getenv("full_token")
|
16 |
if hf_api_key is None:
|
17 |
+
raise ValueError("Hugging Face API key not found! Please set 'full_token' environment variable.")
|
18 |
else:
|
19 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
20 |
|
21 |
+
# Define the text-to-image model URL (using a stable diffusion model)
|
22 |
+
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
|
23 |
|
24 |
+
# Function to generate an image using Hugging Face's text-to-image model
|
25 |
+
def generate_image_from_text(translated_text):
|
26 |
try:
|
27 |
+
print(f"Generating image from translated text: {translated_text}")
|
28 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": translated_text})
|
29 |
+
|
30 |
+
# Check if the response is successful
|
31 |
+
if response.status_code != 200:
|
32 |
+
print(f"Error generating image: {response.text}")
|
33 |
+
return None, f"Error generating image: {response.text}"
|
34 |
+
|
35 |
+
# Read and return the generated image
|
36 |
+
image_bytes = response.content
|
37 |
+
image = Image.open(io.BytesIO(image_bytes))
|
38 |
+
print("Image generation completed.")
|
39 |
+
return image, None
|
40 |
except Exception as e:
|
41 |
+
print(f"Error during image generation: {e}")
|
42 |
+
return None, f"Error during image generation: {e}"
|
43 |
|
44 |
+
# Define the function to translate Tamil text and generate an image
|
45 |
def translate_and_generate_image(tamil_text):
|
46 |
# Step 1: Translate Tamil text to English using mbart-large-50
|
47 |
try:
|
|
|
52 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
53 |
print(f"Translation completed: {translated_text}")
|
54 |
except Exception as e:
|
55 |
+
return f"Error during translation: {e}", None
|
|
|
|
|
56 |
|
57 |
+
# Step 2: Directly generate an image using the translated English text
|
58 |
+
image, error_message = generate_image_from_text(translated_text)
|
59 |
+
if error_message:
|
60 |
+
return translated_text, error_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
return translated_text, image
|
63 |
|
64 |
# Gradio interface setup
|
65 |
iface = gr.Interface(
|
66 |
fn=translate_and_generate_image,
|
67 |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
68 |
outputs=[gr.Textbox(label="Translated English Text"),
|
|
|
69 |
gr.Image(label="Generated Image")],
|
70 |
+
title="Tamil to English Translation and Image Creation",
|
71 |
+
description="Translate Tamil text to English using Facebook's mbart-large-50 model and create an image using the translated text.",
|
72 |
)
|
73 |
|
74 |
# Launch Gradio app without `share=True`
|