gokilashree's picture
Update app.py
2277b4f verified
raw
history blame
2.61 kB
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, pipeline
import gradio as gr
import requests
import io
from PIL import Image
import os
import torch # For text generation models
# Load the translation model and tokenizer
model_name = "facebook/mbart-large-50-many-to-one-mmt"
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)
# Use GPT-2 for text generation instead of LLaMA
text_gen_model = "gpt2"
pipe = pipeline(
"text-generation",
model=text_gen_model,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Use the Hugging Face API key from environment variables for text-to-image model
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
headers = {"Authorization": f"Bearer {os.getenv('hf_token')}"}
# Define the translation, text generation, and image generation function
def translate_and_generate_image(tamil_text):
# Step 1: Translate Tamil text to English using mbart-large-50
tokenizer.src_lang = "ta_IN"
inputs = tokenizer(tamil_text, return_tensors="pt")
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
# Step 2: Generate descriptive English text using GPT-2
generated_text = pipe(translated_text, max_length=100, num_return_sequences=1)[0]['generated_text']
# Step 3: Use the generated English text to create an image
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
# Generate image using the generated text
image_bytes = query({"inputs": generated_text})
image = Image.open(io.BytesIO(image_bytes))
return translated_text, generated_text, image
# Gradio interface setup
iface = gr.Interface(
fn=translate_and_generate_image,
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
outputs=[gr.Textbox(label="Translated English Text"),
gr.Textbox(label="Generated Descriptive Text"),
gr.Image(label="Generated Image")],
title="Tamil to English Translation, Text Generation, and Image Creation",
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using GPT-2, and create an image using the generated text.",
)
# Launch Gradio app with a shareable link
iface.launch(share=True)