gokilashree commited on
Commit
2277b4f
·
verified ·
1 Parent(s): 395b108

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -1,30 +1,29 @@
1
  from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
2
- from transformers import MBartForConditionalGeneration, MBart50Tokenizer
3
- from transformers import pipeline
4
  import gradio as gr
5
  import requests
6
  import io
7
  from PIL import Image
8
  import os
9
- import torch # For LLaMA text generation
10
 
11
  # Load the translation model and tokenizer
12
  model_name = "facebook/mbart-large-50-many-to-one-mmt"
13
  tokenizer = MBart50Tokenizer.from_pretrained(model_name)
14
  model = MBartForConditionalGeneration.from_pretrained(model_name)
15
 
16
- # Load the LLaMA model for text generation
17
- model_id = "meta-llama/Llama-3.2-1B" # Use LLaMA model for text generation
18
  pipe = pipeline(
19
  "text-generation",
20
- model=model_id,
21
- torch_dtype=torch.bfloat16, # Using bfloat16 for reduced memory footprint
22
- device_map="auto" # Automatically assign devices for multi-GPU or CPU fallback
23
  )
24
 
25
  # Use the Hugging Face API key from environment variables for text-to-image model
26
  API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
27
- headers = {"Authorization": f"Bearer {os.getenv('hf_tokens')}"}
28
 
29
  # Define the translation, text generation, and image generation function
30
  def translate_and_generate_image(tamil_text):
@@ -34,7 +33,7 @@ def translate_and_generate_image(tamil_text):
34
  translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
35
  translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
36
 
37
- # Step 2: Generate descriptive English text using LLaMA model
38
  generated_text = pipe(translated_text, max_length=100, num_return_sequences=1)[0]['generated_text']
39
 
40
  # Step 3: Use the generated English text to create an image
@@ -55,8 +54,8 @@ iface = gr.Interface(
55
  outputs=[gr.Textbox(label="Translated English Text"),
56
  gr.Textbox(label="Generated Descriptive Text"),
57
  gr.Image(label="Generated Image")],
58
- title="Tamil to English Translation, Text Generation with LLaMA, and Image Creation",
59
- description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using Meta's LLaMA model, and create an image using the generated text.",
60
  )
61
 
62
  # Launch Gradio app with a shareable link
 
1
  from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
2
+ from transformers import MBartForConditionalGeneration, MBart50Tokenizer, pipeline
 
3
  import gradio as gr
4
  import requests
5
  import io
6
  from PIL import Image
7
  import os
8
+ import torch # For text generation models
9
 
10
  # Load the translation model and tokenizer
11
  model_name = "facebook/mbart-large-50-many-to-one-mmt"
12
  tokenizer = MBart50Tokenizer.from_pretrained(model_name)
13
  model = MBartForConditionalGeneration.from_pretrained(model_name)
14
 
15
+ # Use GPT-2 for text generation instead of LLaMA
16
+ text_gen_model = "gpt2"
17
  pipe = pipeline(
18
  "text-generation",
19
+ model=text_gen_model,
20
+ torch_dtype=torch.bfloat16,
21
+ device_map="auto"
22
  )
23
 
24
  # Use the Hugging Face API key from environment variables for text-to-image model
25
  API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
26
+ headers = {"Authorization": f"Bearer {os.getenv('hf_token')}"}
27
 
28
  # Define the translation, text generation, and image generation function
29
  def translate_and_generate_image(tamil_text):
 
33
  translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
34
  translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
35
 
36
+ # Step 2: Generate descriptive English text using GPT-2
37
  generated_text = pipe(translated_text, max_length=100, num_return_sequences=1)[0]['generated_text']
38
 
39
  # Step 3: Use the generated English text to create an image
 
54
  outputs=[gr.Textbox(label="Translated English Text"),
55
  gr.Textbox(label="Generated Descriptive Text"),
56
  gr.Image(label="Generated Image")],
57
+ title="Tamil to English Translation, Text Generation, and Image Creation",
58
+ description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using GPT-2, and create an image using the generated text.",
59
  )
60
 
61
  # Launch Gradio app with a shareable link