gokilashree's picture
Update app.py
37409eb verified
raw
history blame
2.98 kB
import openai
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
import gradio as gr
import requests
import io
from PIL import Image
import os
# Set up your OpenAI API key (make sure it's stored as an environment variable)
openai.api_key = os.getenv("OPENAI_API_KEY")
# Load the translation model and tokenizer
model_name = "facebook/mbart-large-50-many-to-one-mmt"
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)
# Use the Hugging Face API key from environment variables for text-to-image model
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
headers = {"Authorization": f"Bearer {os.getenv('full_token')}"}
# Define the OpenAI GPT-3 text generation function
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
response = openai.Completion.create(
engine="text-davinci-003", # You can also use "text-davinci-002" or "curie"
prompt=prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=0.9,
frequency_penalty=0.0,
presence_penalty=0.0
)
return response.choices[0].text.strip()
# Define the translation, GPT-3 text generation, and image generation function
def translate_and_generate_image(tamil_text):
# Step 1: Translate Tamil text to English using mbart-large-50
tokenizer.src_lang = "ta_IN"
inputs = tokenizer(tamil_text, return_tensors="pt")
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
# Step 2: Generate high-quality descriptive text using OpenAI's GPT-3
prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
# Step 3: Use the generated English text to create an image
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
# Generate image using the generated text
image_bytes = query({"inputs": generated_text})
image = Image.open(io.BytesIO(image_bytes))
return translated_text, generated_text, image
# Gradio interface setup
iface = gr.Interface(
fn=translate_and_generate_image,
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
outputs=[gr.Textbox(label="Translated English Text"),
gr.Textbox(label="Generated Descriptive Text"),
gr.Image(label="Generated Image")],
title="Tamil to English Translation, GPT-3 Text Generation, and Image Creation",
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate high-quality text using GPT-3, and create an image using the generated text.",
)
# Launch Gradio app without `share=True`
iface.launch()