import openai from transformers import MBartForConditionalGeneration, MBart50Tokenizer import gradio as gr import requests import io from PIL import Image import os # Set up your OpenAI API key (make sure it's stored as an environment variable) openai.api_key = os.getenv("OPENAI_API_KEY") # Load the translation model and tokenizer model_name = "facebook/mbart-large-50-many-to-one-mmt" tokenizer = MBart50Tokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) # Use the Hugging Face API key from environment variables for text-to-image model API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image" headers = {"Authorization": f"Bearer {os.getenv('full_token')}"} # Define the OpenAI GPT-3 text generation function def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7): response = openai.Completion.create( engine="text-davinci-003", # You can also use "text-davinci-002" or "curie" prompt=prompt, max_tokens=max_tokens, temperature=temperature, top_p=0.9, frequency_penalty=0.0, presence_penalty=0.0 ) return response.choices[0].text.strip() # Define the translation, GPT-3 text generation, and image generation function def translate_and_generate_image(tamil_text): # Step 1: Translate Tamil text to English using mbart-large-50 tokenizer.src_lang = "ta_IN" inputs = tokenizer(tamil_text, return_tensors="pt") translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] # Step 2: Generate high-quality descriptive text using OpenAI's GPT-3 prompt = f"Create a detailed and creative description based on the following text: {translated_text}" generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7) # Step 3: Use the generated English text to create an image def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content # Generate image using the generated text image_bytes = query({"inputs": generated_text}) image = Image.open(io.BytesIO(image_bytes)) return translated_text, generated_text, image # Gradio interface setup iface = gr.Interface( fn=translate_and_generate_image, inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), outputs=[gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated Descriptive Text"), gr.Image(label="Generated Image")], title="Tamil to English Translation, GPT-3 Text Generation, and Image Creation", description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate high-quality text using GPT-3, and create an image using the generated text.", ) # Launch Gradio app without `share=True` iface.launch()