Spaces:
Runtime error
Runtime error
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer | |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer | |
from transformers import pipeline | |
import gradio as gr | |
import requests | |
import io | |
from PIL import Image | |
import os | |
import torch # For LLaMA text generation | |
# Load the translation model and tokenizer | |
model_name = "facebook/mbart-large-50-many-to-one-mmt" | |
tokenizer = MBart50Tokenizer.from_pretrained(model_name) | |
model = MBartForConditionalGeneration.from_pretrained(model_name) | |
# Load the LLaMA model for text generation | |
model_id = "meta-llama/Llama-3.2-1B" # Use LLaMA model for text generation | |
pipe = pipeline( | |
"text-generation", | |
model=model_id, | |
torch_dtype=torch.bfloat16, # Using bfloat16 for reduced memory footprint | |
device_map="auto" # Automatically assign devices for multi-GPU or CPU fallback | |
) | |
# Use the Hugging Face API key from environment variables for text-to-image model | |
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image" | |
headers = {"Authorization": f"Bearer {os.getenv('hf_tokens')}"} | |
# Define the translation, text generation, and image generation function | |
def translate_and_generate_image(tamil_text): | |
# Step 1: Translate Tamil text to English using mbart-large-50 | |
tokenizer.src_lang = "ta_IN" | |
inputs = tokenizer(tamil_text, return_tensors="pt") | |
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) | |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] | |
# Step 2: Generate descriptive English text using LLaMA model | |
generated_text = pipe(translated_text, max_length=100, num_return_sequences=1)[0]['generated_text'] | |
# Step 3: Use the generated English text to create an image | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.content | |
# Generate image using the generated text | |
image_bytes = query({"inputs": generated_text}) | |
image = Image.open(io.BytesIO(image_bytes)) | |
return translated_text, generated_text, image | |
# Gradio interface setup | |
iface = gr.Interface( | |
fn=translate_and_generate_image, | |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), | |
outputs=[gr.Textbox(label="Translated English Text"), | |
gr.Textbox(label="Generated Descriptive Text"), | |
gr.Image(label="Generated Image")], | |
title="Tamil to English Translation, Text Generation with LLaMA, and Image Creation", | |
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using Meta's LLaMA model, and create an image using the generated text.", | |
) | |
# Launch Gradio app with a shareable link | |
iface.launch(share=True) | |