gokilashree commited on
Commit
1a79b75
·
verified ·
1 Parent(s): 17c1ca2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
2
+ from transformers import MBartForConditionalGeneration, MBart50Tokenizer
3
+ from transformers import pipeline
4
+ import gradio as gr
5
+ import requests
6
+ import io
7
+ from PIL import Image
8
+ import os
9
+ import torch # For LLaMA text generation
10
+
11
+ # Load the translation model and tokenizer
12
+ model_name = "facebook/mbart-large-50-many-to-one-mmt"
13
+ tokenizer = MBart50Tokenizer.from_pretrained(model_name)
14
+ model = MBartForConditionalGeneration.from_pretrained(model_name)
15
+
16
+ # Load the LLaMA model for text generation
17
+ model_id = "meta-llama/Llama-3.2-1B" # Use LLaMA model for text generation
18
+ pipe = pipeline(
19
+ "text-generation",
20
+ model=model_id,
21
+ torch_dtype=torch.bfloat16, # Using bfloat16 for reduced memory footprint
22
+ device_map="auto" # Automatically assign devices for multi-GPU or CPU fallback
23
+ )
24
+
25
+ # Use the Hugging Face API key from environment variables for text-to-image model
26
+ API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
27
+ headers = {"Authorization": f"Bearer {os.getenv('hf_tokens')}"}
28
+
29
+ # Define the translation, text generation, and image generation function
30
+ def translate_and_generate_image(tamil_text):
31
+ # Step 1: Translate Tamil text to English using mbart-large-50
32
+ tokenizer.src_lang = "ta_IN"
33
+ inputs = tokenizer(tamil_text, return_tensors="pt")
34
+ translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
35
+ translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
36
+
37
+ # Step 2: Generate descriptive English text using LLaMA model
38
+ generated_text = pipe(translated_text, max_length=100, num_return_sequences=1)[0]['generated_text']
39
+
40
+ # Step 3: Use the generated English text to create an image
41
+ def query(payload):
42
+ response = requests.post(API_URL, headers=headers, json=payload)
43
+ return response.content
44
+
45
+ # Generate image using the generated text
46
+ image_bytes = query({"inputs": generated_text})
47
+ image = Image.open(io.BytesIO(image_bytes))
48
+
49
+ return translated_text, generated_text, image
50
+
51
+ # Gradio interface setup
52
+ iface = gr.Interface(
53
+ fn=translate_and_generate_image,
54
+ inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
55
+ outputs=[gr.Textbox(label="Translated English Text"),
56
+ gr.Textbox(label="Generated Descriptive Text"),
57
+ gr.Image(label="Generated Image")],
58
+ title="Tamil to English Translation, Text Generation with LLaMA, and Image Creation",
59
+ description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using Meta's LLaMA model, and create an image using the generated text.",
60
+ )
61
+
62
+ # Launch Gradio app with a shareable link
63
+ iface.launch(share=True)