Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
2 |
+
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
from PIL import Image
|
8 |
+
import os
|
9 |
+
import torch # For LLaMA text generation
|
10 |
+
|
11 |
+
# Load the translation model and tokenizer
|
12 |
+
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
13 |
+
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
14 |
+
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# Load the LLaMA model for text generation
|
17 |
+
model_id = "meta-llama/Llama-3.2-1B" # Use LLaMA model for text generation
|
18 |
+
pipe = pipeline(
|
19 |
+
"text-generation",
|
20 |
+
model=model_id,
|
21 |
+
torch_dtype=torch.bfloat16, # Using bfloat16 for reduced memory footprint
|
22 |
+
device_map="auto" # Automatically assign devices for multi-GPU or CPU fallback
|
23 |
+
)
|
24 |
+
|
25 |
+
# Use the Hugging Face API key from environment variables for text-to-image model
|
26 |
+
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
|
27 |
+
headers = {"Authorization": f"Bearer {os.getenv('hf_tokens')}"}
|
28 |
+
|
29 |
+
# Define the translation, text generation, and image generation function
|
30 |
+
def translate_and_generate_image(tamil_text):
|
31 |
+
# Step 1: Translate Tamil text to English using mbart-large-50
|
32 |
+
tokenizer.src_lang = "ta_IN"
|
33 |
+
inputs = tokenizer(tamil_text, return_tensors="pt")
|
34 |
+
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
35 |
+
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
36 |
+
|
37 |
+
# Step 2: Generate descriptive English text using LLaMA model
|
38 |
+
generated_text = pipe(translated_text, max_length=100, num_return_sequences=1)[0]['generated_text']
|
39 |
+
|
40 |
+
# Step 3: Use the generated English text to create an image
|
41 |
+
def query(payload):
|
42 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
43 |
+
return response.content
|
44 |
+
|
45 |
+
# Generate image using the generated text
|
46 |
+
image_bytes = query({"inputs": generated_text})
|
47 |
+
image = Image.open(io.BytesIO(image_bytes))
|
48 |
+
|
49 |
+
return translated_text, generated_text, image
|
50 |
+
|
51 |
+
# Gradio interface setup
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=translate_and_generate_image,
|
54 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
55 |
+
outputs=[gr.Textbox(label="Translated English Text"),
|
56 |
+
gr.Textbox(label="Generated Descriptive Text"),
|
57 |
+
gr.Image(label="Generated Image")],
|
58 |
+
title="Tamil to English Translation, Text Generation with LLaMA, and Image Creation",
|
59 |
+
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate descriptive text using Meta's LLaMA model, and create an image using the generated text.",
|
60 |
+
)
|
61 |
+
|
62 |
+
# Launch Gradio app with a shareable link
|
63 |
+
iface.launch(share=True)
|