File size: 4,156 Bytes
95431fa
eb723d1
810e901
 
eb723d1
95431fa
 
 
 
eb723d1
95431fa
 
eb723d1
95431fa
eb723d1
95431fa
eb723d1
 
810e901
 
 
 
 
eb723d1
95431fa
810e901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb723d1
810e901
 
 
 
 
 
 
 
 
 
95431fa
810e901
 
 
 
 
 
 
 
 
 
 
95431fa
810e901
0501446
810e901
 
 
 
 
 
 
 
 
 
0501446
810e901
95431fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
import torch
from diffusers import FluxPipeline

# Load the translation model and tokenizer
model_name = "facebook/mbart-large-50-many-to-one-mmt"
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)

# Load a smaller text generation model to reduce generation time
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)

# Create a pipeline for text generation using the selected model
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)

# Set up the new FluxPipeline for the text-to-image model
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()  # Enable CPU offloading to save GPU memory if needed

# Function to generate an image using the new FluxPipeline model
def generate_image_from_text(translated_text):
    try:
        print(f"Generating image from translated text: {translated_text}")
        # Use the FluxPipeline to generate an image from the text
        image = pipe(translated_text).images[0]
        print("Image generation completed.")
        return image, None
    except Exception as e:
        print(f"Error during image generation: {e}")
        return None, f"Error during image generation: {e}"

# Function to generate a shorter paragraph based on the translated text
def generate_short_paragraph_from_text(translated_text):
    try:
        print(f"Generating a short paragraph from translated text: {translated_text}")
        # Generate a shorter paragraph from the translated text using smaller settings
        paragraph = text_generator(translated_text, max_length=150, num_return_sequences=1, temperature=0.2, top_p=0.8)[0]['generated_text']
        print(f"Paragraph generation completed: {paragraph}")
        return paragraph
    except Exception as e:
        print(f"Error during paragraph generation: {e}")
        return f"Error during paragraph generation: {e}"

# Define the function to translate Tamil text, generate a short paragraph, and create an image
def translate_generate_paragraph_and_image(tamil_text):
    # Step 1: Translate Tamil text to English using mbart-large-50
    try:
        print("Translating Tamil text to English...")
        tokenizer.src_lang = "ta_IN"
        inputs = tokenizer(tamil_text, return_tensors="pt")
        translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
        translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
        print(f"Translation completed: {translated_text}")
    except Exception as e:
        return f"Error during translation: {e}", "", None, None

    # Step 2: Generate a shorter paragraph based on the translated English text
    paragraph = generate_short_paragraph_from_text(translated_text)
    if "Error" in paragraph:
        return translated_text, paragraph, None, None

    # Step 3: Generate an image using the translated English text
    image, error_message = generate_image_from_text(translated_text)
    if error_message:
        return translated_text, paragraph, None, error_message

    return translated_text, paragraph, image, None

# Gradio interface setup
iface = gr.Interface(
    fn=translate_generate_paragraph_and_image,
    inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
    outputs=[gr.Textbox(label="Translated English Text"), 
             gr.Textbox(label="Generated Short Paragraph"),
             gr.Image(label="Generated Image")],
    title="Tamil to English Translation, Short Paragraph Generation, and Image Creation",
    description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a short paragraph, and create an image using the translated text.",
)

# Launch the Gradio app
iface.launch()