Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,13 @@
|
|
| 1 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import os
|
| 7 |
|
| 8 |
# Load the translation model and tokenizer
|
| 9 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
| 10 |
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
| 11 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
| 12 |
|
| 13 |
-
# Use the Hugging Face API key from environment variables for text-to-image model
|
| 14 |
-
hf_api_key = os.getenv("new_hf_token")
|
| 15 |
-
if hf_api_key is None:
|
| 16 |
-
raise ValueError("Hugging Face API key not found! Please set 'full_token' environment variable.")
|
| 17 |
-
else:
|
| 18 |
-
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
| 19 |
-
|
| 20 |
-
# Define the text-to-image model URL (using a faster text-to-image model)
|
| 21 |
-
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
|
| 22 |
-
|
| 23 |
# Load a smaller text generation model to reduce generation time
|
| 24 |
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
|
| 25 |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
|
@@ -28,45 +16,69 @@ text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)
|
|
| 28 |
# Create a pipeline for text generation using the selected model
|
| 29 |
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
|
| 30 |
|
| 31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def generate_image_from_text(translated_text):
|
| 33 |
try:
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
except Exception as e:
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
def translate_text(input_text, src_lang="en_XX", tgt_lang="hi_IN"):
|
| 55 |
-
tokenizer.src_lang = src_lang
|
| 56 |
-
encoded_input = tokenizer(input_text, return_tensors="pt")
|
| 57 |
-
generated_tokens = model.generate(encoded_input["input_ids"], forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])
|
| 58 |
-
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 59 |
|
| 60 |
-
# Gradio
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
iface = gr.Interface(fn=translate_and_generate_image,
|
| 68 |
-
inputs="text",
|
| 69 |
-
outputs="image",
|
| 70 |
-
title="Yoga Image Generator",
|
| 71 |
-
description="Enter a description to translate and generate a high-quality yoga image.")
|
| 72 |
iface.launch()
|
|
|
|
| 1 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 2 |
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import FluxPipeline
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load the translation model and tokenizer
|
| 7 |
model_name = "facebook/mbart-large-50-many-to-one-mmt"
|
| 8 |
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
| 9 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Load a smaller text generation model to reduce generation time
|
| 12 |
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
|
| 13 |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
|
|
|
| 16 |
# Create a pipeline for text generation using the selected model
|
| 17 |
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)
|
| 18 |
|
| 19 |
+
# Set up the new FluxPipeline for the text-to-image model
|
| 20 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
| 21 |
+
pipe.enable_model_cpu_offload() # Enable CPU offloading to save GPU memory if needed
|
| 22 |
+
|
| 23 |
+
# Function to generate an image using the new FluxPipeline model
|
| 24 |
def generate_image_from_text(translated_text):
|
| 25 |
try:
|
| 26 |
+
print(f"Generating image from translated text: {translated_text}")
|
| 27 |
+
# Use the FluxPipeline to generate an image from the text
|
| 28 |
+
image = pipe(translated_text).images[0]
|
| 29 |
+
print("Image generation completed.")
|
| 30 |
+
return image, None
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Error during image generation: {e}")
|
| 33 |
+
return None, f"Error during image generation: {e}"
|
| 34 |
+
|
| 35 |
+
# Function to generate a shorter paragraph based on the translated text
|
| 36 |
+
def generate_short_paragraph_from_text(translated_text):
|
| 37 |
+
try:
|
| 38 |
+
print(f"Generating a short paragraph from translated text: {translated_text}")
|
| 39 |
+
# Generate a shorter paragraph from the translated text using smaller settings
|
| 40 |
+
paragraph = text_generator(translated_text, max_length=150, num_return_sequences=1, temperature=0.2, top_p=0.8)[0]['generated_text']
|
| 41 |
+
print(f"Paragraph generation completed: {paragraph}")
|
| 42 |
+
return paragraph
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error during paragraph generation: {e}")
|
| 45 |
+
return f"Error during paragraph generation: {e}"
|
| 46 |
|
| 47 |
+
# Define the function to translate Tamil text, generate a short paragraph, and create an image
|
| 48 |
+
def translate_generate_paragraph_and_image(tamil_text):
|
| 49 |
+
# Step 1: Translate Tamil text to English using mbart-large-50
|
| 50 |
+
try:
|
| 51 |
+
print("Translating Tamil text to English...")
|
| 52 |
+
tokenizer.src_lang = "ta_IN"
|
| 53 |
+
inputs = tokenizer(tamil_text, return_tensors="pt")
|
| 54 |
+
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
| 55 |
+
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
| 56 |
+
print(f"Translation completed: {translated_text}")
|
| 57 |
except Exception as e:
|
| 58 |
+
return f"Error during translation: {e}", "", None, None
|
| 59 |
+
|
| 60 |
+
# Step 2: Generate a shorter paragraph based on the translated English text
|
| 61 |
+
paragraph = generate_short_paragraph_from_text(translated_text)
|
| 62 |
+
if "Error" in paragraph:
|
| 63 |
+
return translated_text, paragraph, None, None
|
| 64 |
+
|
| 65 |
+
# Step 3: Generate an image using the translated English text
|
| 66 |
+
image, error_message = generate_image_from_text(translated_text)
|
| 67 |
+
if error_message:
|
| 68 |
+
return translated_text, paragraph, None, error_message
|
| 69 |
|
| 70 |
+
return translated_text, paragraph, image, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# Gradio interface setup
|
| 73 |
+
iface = gr.Interface(
|
| 74 |
+
fn=translate_generate_paragraph_and_image,
|
| 75 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
| 76 |
+
outputs=[gr.Textbox(label="Translated English Text"),
|
| 77 |
+
gr.Textbox(label="Generated Short Paragraph"),
|
| 78 |
+
gr.Image(label="Generated Image")],
|
| 79 |
+
title="Tamil to English Translation, Short Paragraph Generation, and Image Creation",
|
| 80 |
+
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a short paragraph, and create an image using the translated text.",
|
| 81 |
+
)
|
| 82 |
|
| 83 |
+
# Launch the Gradio app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
iface.launch()
|