Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,17 +19,21 @@ DESCRIPTION = """"
|
|
| 19 |
CITATION = """"
|
| 20 |
"""
|
| 21 |
|
| 22 |
-
def binary_classification(input):
|
| 23 |
-
model = pipeline(model='gokceuludogan/
|
| 24 |
return model(input)[0]
|
| 25 |
|
| 26 |
-
def category_classification(input):
|
| 27 |
-
model = pipeline(model='gokceuludogan/
|
| 28 |
return model(input)[0]
|
| 29 |
|
| 30 |
def target_detection(input):
|
| 31 |
-
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_target'
|
| 32 |
-
return model(input)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
with gr.Blocks(theme="abidlabs/Lime") as demo:
|
| 35 |
|
|
@@ -44,25 +48,26 @@ with gr.Blocks(theme="abidlabs/Lime") as demo:
|
|
| 44 |
with gr.Column():
|
| 45 |
with gr.Row():
|
| 46 |
with gr.Column():
|
| 47 |
-
|
| 48 |
sentiment_input = gr.Textbox(label="Input")
|
| 49 |
|
| 50 |
sentiment_submit = gr.Button()
|
| 51 |
sentiment_output = gr.Textbox(label="Output")
|
| 52 |
-
sentiment_submit.click(binary_classification, inputs=[sentiment_input], outputs=sentiment_output)
|
| 53 |
-
sentiment_examples = gr.Examples(examples = binary_example, inputs = [sentiment_input], outputs=sentiment_output, fn=binary_classification)
|
| 54 |
|
| 55 |
with gr.Tab("Hate Speech Categorization"):
|
| 56 |
gr.Markdown("Enter a hateful text to categorize or try the example.")
|
| 57 |
with gr.Column():
|
| 58 |
with gr.Row():
|
| 59 |
with gr.Column():
|
|
|
|
| 60 |
text_input = gr.Textbox(label="Input")
|
| 61 |
|
| 62 |
text_submit = gr.Button()
|
| 63 |
text_output = gr.Textbox(label="Output")
|
| 64 |
-
text_submit.click(category_classification, inputs=[text_input], outputs=text_output)
|
| 65 |
-
text_examples = gr.Examples(examples = category_example,inputs=[text_input], outputs=text_output, fn=category_classification)
|
| 66 |
|
| 67 |
|
| 68 |
with gr.Tab("Target Detection"):
|
|
@@ -74,8 +79,20 @@ with gr.Blocks(theme="abidlabs/Lime") as demo:
|
|
| 74 |
nli_submit = gr.Button()
|
| 75 |
nli_output = gr.Textbox(label="Output")
|
| 76 |
nli_submit.click(target_detection, inputs=[nli_first_input], outputs=nli_output)
|
| 77 |
-
nli_examples = gr.Examples(examples = target_example, inputs = [nli_first_input], outputs=nli_output, fn=
|
|
|
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
gr.Markdown(CITATION)
|
| 80 |
|
| 81 |
demo.launch()
|
|
|
|
| 19 |
CITATION = """"
|
| 20 |
"""
|
| 21 |
|
| 22 |
+
def binary_classification(input, choice):
|
| 23 |
+
model = pipeline(model=f'gokceuludogan/{choice}')
|
| 24 |
return model(input)[0]
|
| 25 |
|
| 26 |
+
def category_classification(input, choice):
|
| 27 |
+
model = pipeline(model=f'gokceuludogan/{choice}')
|
| 28 |
return model(input)[0]
|
| 29 |
|
| 30 |
def target_detection(input):
|
| 31 |
+
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_target')
|
| 32 |
+
return model(input)[0]['generated_text']
|
| 33 |
+
|
| 34 |
+
def multi_detection(input):
|
| 35 |
+
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_multi')
|
| 36 |
+
return model(input)[0]['generated_text']
|
| 37 |
|
| 38 |
with gr.Blocks(theme="abidlabs/Lime") as demo:
|
| 39 |
|
|
|
|
| 48 |
with gr.Column():
|
| 49 |
with gr.Row():
|
| 50 |
with gr.Column():
|
| 51 |
+
sentiment_choice = gr.Radio(choices = ["turna_tr_hateprint", "turna_tr_hateprint_5e6_w0.1_", "berturk_tr_hateprint_w0.1", "berturk_tr_hateprint_w0.1_b128"], label ="Model", value="turna_tr_hateprint")
|
| 52 |
sentiment_input = gr.Textbox(label="Input")
|
| 53 |
|
| 54 |
sentiment_submit = gr.Button()
|
| 55 |
sentiment_output = gr.Textbox(label="Output")
|
| 56 |
+
sentiment_submit.click(binary_classification, inputs=[sentiment_input, sentiment_choice], outputs=sentiment_output)
|
| 57 |
+
sentiment_examples = gr.Examples(examples = binary_example, inputs = [sentiment_input, sentiment_choice], outputs=sentiment_output, fn=binary_classification)
|
| 58 |
|
| 59 |
with gr.Tab("Hate Speech Categorization"):
|
| 60 |
gr.Markdown("Enter a hateful text to categorize or try the example.")
|
| 61 |
with gr.Column():
|
| 62 |
with gr.Row():
|
| 63 |
with gr.Column():
|
| 64 |
+
text_choice = gr.Radio(choices= ["berturk_tr_hateprint_cat_w0.1_b128", "berturk_tr_hateprint_cat_w0.1"])
|
| 65 |
text_input = gr.Textbox(label="Input")
|
| 66 |
|
| 67 |
text_submit = gr.Button()
|
| 68 |
text_output = gr.Textbox(label="Output")
|
| 69 |
+
text_submit.click(category_classification, inputs=[text_input, text_choice], outputs=text_output)
|
| 70 |
+
text_examples = gr.Examples(examples = category_example,inputs=[text_input, text_choice], outputs=text_output, fn=category_classification)
|
| 71 |
|
| 72 |
|
| 73 |
with gr.Tab("Target Detection"):
|
|
|
|
| 79 |
nli_submit = gr.Button()
|
| 80 |
nli_output = gr.Textbox(label="Output")
|
| 81 |
nli_submit.click(target_detection, inputs=[nli_first_input], outputs=nli_output)
|
| 82 |
+
nli_examples = gr.Examples(examples = target_example, inputs = [nli_first_input], outputs=nli_output, fn=target_detection)
|
| 83 |
+
|
| 84 |
|
| 85 |
+
with gr.Tab("Multi Detection"):
|
| 86 |
+
gr.Markdown("Enter text to detect hate, category, and targets ")
|
| 87 |
+
with gr.Column():
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
nli_first_input = gr.Textbox(label="Input")
|
| 91 |
+
nli_submit = gr.Button()
|
| 92 |
+
nli_output = gr.Textbox(label="Output")
|
| 93 |
+
nli_submit.click(multi_detection, inputs=[nli_first_input], outputs=nli_output)
|
| 94 |
+
nli_examples = gr.Examples(examples = target_example, inputs = [nli_first_input], outputs=nli_output, fn=multi_detection)
|
| 95 |
+
|
| 96 |
gr.Markdown(CITATION)
|
| 97 |
|
| 98 |
demo.launch()
|