Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,17 +19,21 @@ DESCRIPTION = """"
|
|
19 |
CITATION = """"
|
20 |
"""
|
21 |
|
22 |
-
def binary_classification(input):
|
23 |
-
model = pipeline(model='gokceuludogan/
|
24 |
return model(input)[0]
|
25 |
|
26 |
-
def category_classification(input):
|
27 |
-
model = pipeline(model='gokceuludogan/
|
28 |
return model(input)[0]
|
29 |
|
30 |
def target_detection(input):
|
31 |
-
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_target'
|
32 |
-
return model(input)[0]
|
|
|
|
|
|
|
|
|
33 |
|
34 |
with gr.Blocks(theme="abidlabs/Lime") as demo:
|
35 |
|
@@ -44,25 +48,26 @@ with gr.Blocks(theme="abidlabs/Lime") as demo:
|
|
44 |
with gr.Column():
|
45 |
with gr.Row():
|
46 |
with gr.Column():
|
47 |
-
|
48 |
sentiment_input = gr.Textbox(label="Input")
|
49 |
|
50 |
sentiment_submit = gr.Button()
|
51 |
sentiment_output = gr.Textbox(label="Output")
|
52 |
-
sentiment_submit.click(binary_classification, inputs=[sentiment_input], outputs=sentiment_output)
|
53 |
-
sentiment_examples = gr.Examples(examples = binary_example, inputs = [sentiment_input], outputs=sentiment_output, fn=binary_classification)
|
54 |
|
55 |
with gr.Tab("Hate Speech Categorization"):
|
56 |
gr.Markdown("Enter a hateful text to categorize or try the example.")
|
57 |
with gr.Column():
|
58 |
with gr.Row():
|
59 |
with gr.Column():
|
|
|
60 |
text_input = gr.Textbox(label="Input")
|
61 |
|
62 |
text_submit = gr.Button()
|
63 |
text_output = gr.Textbox(label="Output")
|
64 |
-
text_submit.click(category_classification, inputs=[text_input], outputs=text_output)
|
65 |
-
text_examples = gr.Examples(examples = category_example,inputs=[text_input], outputs=text_output, fn=category_classification)
|
66 |
|
67 |
|
68 |
with gr.Tab("Target Detection"):
|
@@ -74,8 +79,20 @@ with gr.Blocks(theme="abidlabs/Lime") as demo:
|
|
74 |
nli_submit = gr.Button()
|
75 |
nli_output = gr.Textbox(label="Output")
|
76 |
nli_submit.click(target_detection, inputs=[nli_first_input], outputs=nli_output)
|
77 |
-
nli_examples = gr.Examples(examples = target_example, inputs = [nli_first_input], outputs=nli_output, fn=
|
|
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
gr.Markdown(CITATION)
|
80 |
|
81 |
demo.launch()
|
|
|
19 |
CITATION = """"
|
20 |
"""
|
21 |
|
22 |
+
def binary_classification(input, choice):
|
23 |
+
model = pipeline(model=f'gokceuludogan/{choice}')
|
24 |
return model(input)[0]
|
25 |
|
26 |
+
def category_classification(input, choice):
|
27 |
+
model = pipeline(model=f'gokceuludogan/{choice}')
|
28 |
return model(input)[0]
|
29 |
|
30 |
def target_detection(input):
|
31 |
+
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_target')
|
32 |
+
return model(input)[0]['generated_text']
|
33 |
+
|
34 |
+
def multi_detection(input):
|
35 |
+
model = pipeline(model='gokceuludogan/turna_generation_tr_hateprint_multi')
|
36 |
+
return model(input)[0]['generated_text']
|
37 |
|
38 |
with gr.Blocks(theme="abidlabs/Lime") as demo:
|
39 |
|
|
|
48 |
with gr.Column():
|
49 |
with gr.Row():
|
50 |
with gr.Column():
|
51 |
+
sentiment_choice = gr.Radio(choices = ["turna_tr_hateprint", "turna_tr_hateprint_5e6_w0.1_", "berturk_tr_hateprint_w0.1", "berturk_tr_hateprint_w0.1_b128"], label ="Model", value="turna_tr_hateprint")
|
52 |
sentiment_input = gr.Textbox(label="Input")
|
53 |
|
54 |
sentiment_submit = gr.Button()
|
55 |
sentiment_output = gr.Textbox(label="Output")
|
56 |
+
sentiment_submit.click(binary_classification, inputs=[sentiment_input, sentiment_choice], outputs=sentiment_output)
|
57 |
+
sentiment_examples = gr.Examples(examples = binary_example, inputs = [sentiment_input, sentiment_choice], outputs=sentiment_output, fn=binary_classification)
|
58 |
|
59 |
with gr.Tab("Hate Speech Categorization"):
|
60 |
gr.Markdown("Enter a hateful text to categorize or try the example.")
|
61 |
with gr.Column():
|
62 |
with gr.Row():
|
63 |
with gr.Column():
|
64 |
+
text_choice = gr.Radio(choices= ["berturk_tr_hateprint_cat_w0.1_b128", "berturk_tr_hateprint_cat_w0.1"])
|
65 |
text_input = gr.Textbox(label="Input")
|
66 |
|
67 |
text_submit = gr.Button()
|
68 |
text_output = gr.Textbox(label="Output")
|
69 |
+
text_submit.click(category_classification, inputs=[text_input, text_choice], outputs=text_output)
|
70 |
+
text_examples = gr.Examples(examples = category_example,inputs=[text_input, text_choice], outputs=text_output, fn=category_classification)
|
71 |
|
72 |
|
73 |
with gr.Tab("Target Detection"):
|
|
|
79 |
nli_submit = gr.Button()
|
80 |
nli_output = gr.Textbox(label="Output")
|
81 |
nli_submit.click(target_detection, inputs=[nli_first_input], outputs=nli_output)
|
82 |
+
nli_examples = gr.Examples(examples = target_example, inputs = [nli_first_input], outputs=nli_output, fn=target_detection)
|
83 |
+
|
84 |
|
85 |
+
with gr.Tab("Multi Detection"):
|
86 |
+
gr.Markdown("Enter text to detect hate, category, and targets ")
|
87 |
+
with gr.Column():
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
nli_first_input = gr.Textbox(label="Input")
|
91 |
+
nli_submit = gr.Button()
|
92 |
+
nli_output = gr.Textbox(label="Output")
|
93 |
+
nli_submit.click(multi_detection, inputs=[nli_first_input], outputs=nli_output)
|
94 |
+
nli_examples = gr.Examples(examples = target_example, inputs = [nli_first_input], outputs=nli_output, fn=multi_detection)
|
95 |
+
|
96 |
gr.Markdown(CITATION)
|
97 |
|
98 |
demo.launch()
|