Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL | |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
from huggingface_hub import hf_hub_download | |
from optimum.quanto import freeze, qfloat8, quantize | |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images | |
import os | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Set up environment variables and device | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load VAE models | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
subfolder="vae", | |
torch_dtype=dtype, | |
token=huggingface_token | |
).to(device) | |
# Initialize FluxPipeline instead of DiffusionPipeline | |
from pipelines import FluxPipeline | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.float32, # Load in full precision initially | |
vae=taef1, | |
token=huggingface_token | |
).to(device) | |
# Load and fuse LoRA BEFORE quantizing | |
print('Loading and fusing LoRA, please wait...') | |
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors") | |
pipe.load_lora_weights(lora_path) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.unload_lora_weights() | |
# Quantize the transformer | |
print("Quantizing transformer") | |
quantize(pipe.transformer, weights=qfloat8) | |
freeze(pipe.transformer) | |
# Quantize the T5 text encoder | |
print("Quantizing T5 text encoder") | |
quantize(pipe.text_encoder_2, weights=qfloat8) | |
freeze(pipe.text_encoder_2) | |
# Move quantized components to device (if not already) | |
pipe.transformer.to(device) | |
pipe.text_encoder_2.to(device) | |
# Move other components to device | |
pipe.text_encoder.to(device, dtype=dtype) | |
torch.cuda.empty_cache() | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
output_type="pil", | |
good_vae=good_vae, | |
): | |
yield img, seed | |
examples = [ | |
"wbgmsst, a cat, white background", | |
"wbgmsst, a warrior, white background", | |
"wbgmsst, an anime girl, white background", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [dev] | |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.launch() | |