gokaygokay's picture
delete
1d20a91
raw
history blame
5.61 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
from optimum.quanto import freeze, qfloat8, quantize
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
import os
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Set up environment variables and device
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load VAE models
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="vae",
torch_dtype=dtype,
token=huggingface_token
).to(device)
# Initialize FluxPipeline instead of DiffusionPipeline
from pipelines import FluxPipeline
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float32, # Load in full precision initially
vae=taef1,
token=huggingface_token
).to(device)
# Load and fuse LoRA BEFORE quantizing
print('Loading and fusing LoRA, please wait...')
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.unload_lora_weights()
# Quantize the transformer
print("Quantizing transformer")
quantize(pipe.transformer, weights=qfloat8)
freeze(pipe.transformer)
# Quantize the T5 text encoder
print("Quantizing T5 text encoder")
quantize(pipe.text_encoder_2, weights=qfloat8)
freeze(pipe.text_encoder_2)
# Move quantized components to device (if not already)
pipe.transformer.to(device)
pipe.text_encoder_2.to(device)
# Move other components to device
pipe.text_encoder.to(device, dtype=dtype)
torch.cuda.empty_cache()
@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"wbgmsst, a cat, white background",
"wbgmsst, a warrior, white background",
"wbgmsst, an anime girl, white background",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()