Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import time | |
from os import path | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
import torch | |
import rembg | |
from PIL import Image | |
from torchvision.transforms import v2 | |
from einops import rearrange | |
from pytorch_lightning import seed_everything | |
from omegaconf import OmegaConf | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
import gradio as gr | |
import shutil | |
import tempfile | |
from src.utils.train_util import instantiate_from_config | |
from src.utils.camera_util import ( | |
FOV_to_intrinsics, | |
get_zero123plus_input_cameras, | |
get_circular_camera_poses, | |
) | |
from src.utils.mesh_util import save_obj, save_glb | |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video | |
import random | |
import requests | |
import io | |
# Set up cache path | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
def find_cuda(): | |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
nvcc_path = shutil.which('nvcc') | |
if nvcc_path: | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
cuda_path = find_cuda() | |
if cuda_path: | |
print(f"CUDA installation found at: {cuda_path}") | |
else: | |
print("CUDA installation not found") | |
API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
device = 'cuda' | |
# Load 3D generation models | |
config_path = 'configs/instant-mesh-large.yaml' | |
config = OmegaConf.load(config_path) | |
config_name = os.path.basename(config_path).replace('.yaml', '') | |
model_config = config.model_config | |
infer_config = config.infer_config | |
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False | |
# Load diffusion model for 3D generation | |
print('Loading diffusion model ...') | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.2", | |
custom_pipeline="zero123plus", | |
torch_dtype=torch.float16, | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
# Load custom white-background UNet | |
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") | |
state_dict = torch.load(unet_ckpt_path, map_location='cpu') | |
pipeline.unet.load_state_dict(state_dict, strict=True) | |
pipeline = pipeline.to(device) | |
# Load reconstruction model | |
print('Loading reconstruction model ...') | |
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") | |
model = instantiate_from_config(model_config) | |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] | |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} | |
model.load_state_dict(state_dict, strict=True) | |
model = model.to(device) | |
print('Loading Finished!') | |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
def preprocess(input_image, do_remove_background): | |
rembg_session = rembg.new_session() if do_remove_background else None | |
if do_remove_background: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 0.85) | |
return input_image | |
def generate_mvs(input_image, sample_steps, sample_seed): | |
seed_everything(sample_seed) | |
z123_image = pipeline( | |
input_image, | |
num_inference_steps=sample_steps | |
).images[0] | |
show_image = np.asarray(z123_image, dtype=np.uint8) | |
show_image = torch.from_numpy(show_image) | |
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) | |
show_image = Image.fromarray(show_image.numpy()) | |
return z123_image, show_image | |
def make3d(images): | |
global model | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, use_renderer=False) | |
model = model.eval() | |
images = np.asarray(images, dtype=np.float32) / 255.0 | |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() | |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) | |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) | |
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
with torch.no_grad(): | |
planes = model.forward_planes(images, input_cameras) | |
mesh_out = model.extract_mesh( | |
planes, | |
use_texture_map=False, | |
**infer_config, | |
) | |
vertices, faces, vertex_colors = mesh_out | |
vertices = vertices[:, [1, 2, 0]] | |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) | |
save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
return mesh_fpath, mesh_glb_fpath | |
# Remove the FluxPipeline setup and replace with the query function | |
def query(prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024): | |
if not prompt: | |
return None | |
lora_id = "gokaygokay/Flux-Game-Assets-LoRA-v2" | |
API_URL = f"https://api-inference.huggingface.co/models/{lora_id}" | |
if randomize_seed: | |
seed = random.randint(1, 4294967296) | |
payload = { | |
"inputs": prompt, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed, | |
"parameters": { | |
"width": width, | |
"height": height | |
} | |
} | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=100) | |
if response.status_code != 200: | |
if response.status_code == 503: | |
raise gr.Error("The model is being loaded") | |
raise gr.Error(f"Error {response.status_code}") | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
return image | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None | |
# Update the Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
""" | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem;">Flux Image to 3D Model Generator</h1> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox( | |
label="Your Image Description", | |
placeholder="E.g., A serene landscape with mountains and a lake at sunset", | |
lines=3 | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024) | |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024) | |
with gr.Row(): | |
steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28) | |
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5) | |
seed = gr.Number(label="Seed", value=-1, precision=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
generate_btn = gr.Button("Generate 3D Model", variant="primary") | |
with gr.Column(scale=4): | |
flux_output = gr.Image(label="Generated Flux Image") | |
mv_show_images = gr.Image(label="Generated Multi-views") | |
with gr.Row(): | |
with gr.Tab("OBJ"): | |
output_model_obj = gr.Model3D(label="Output Model (OBJ Format)") | |
with gr.Tab("GLB"): | |
output_model_glb = gr.Model3D(label="Output Model (GLB Format)") | |
mv_images = gr.State() | |
def process_pipeline(prompt, height, width, steps, scales, seed, randomize_seed): | |
# Generate Flux image using the API | |
prompt_real = f"wbgmsst, {prompt}, white background" | |
flux_image = query(prompt_real, steps, scales, randomize_seed, seed, width, height) | |
if flux_image is None: | |
raise gr.Error("Failed to generate image") | |
processed_image = preprocess(flux_image, do_remove_background=True) | |
mv_images, show_image = generate_mvs(processed_image, steps, seed) | |
obj_path, glb_path = make3d(mv_images) | |
return flux_image, show_image, obj_path, glb_path | |
generate_btn.click( | |
fn=process_pipeline, | |
inputs=[prompt, height, width, steps, scales, seed, randomize_seed], | |
outputs=[flux_output, mv_show_images, output_model_obj, output_model_glb] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |