Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import gc | |
import json | |
import random | |
import shutil | |
import typing | |
from typing import Union, List, Literal, Iterator | |
import sys | |
import os | |
from collections import OrderedDict | |
import copy | |
import yaml | |
from PIL import Image | |
from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_1024_BIN, ASPECT_RATIO_512_BIN, \ | |
ASPECT_RATIO_2048_BIN, ASPECT_RATIO_256_BIN | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg | |
from safetensors.torch import save_file, load_file | |
from torch import autocast | |
from torch.nn import Parameter | |
from torch.utils.checkpoint import checkpoint | |
from tqdm import tqdm | |
from torchvision.transforms import Resize, transforms | |
from toolkit.assistant_lora import load_assistant_lora_from_path | |
from toolkit.clip_vision_adapter import ClipVisionAdapter | |
from toolkit.custom_adapter import CustomAdapter | |
from toolkit.ip_adapter import IPAdapter | |
from library.model_util import convert_unet_state_dict_to_sd, convert_text_encoder_state_dict_to_sd_v2, \ | |
convert_vae_state_dict, load_vae | |
from toolkit import train_tools | |
from toolkit.config_modules import ModelConfig, GenerateImageConfig | |
from toolkit.metadata import get_meta_for_safetensors | |
from toolkit.paths import REPOS_ROOT, KEYMAPS_ROOT | |
from toolkit.prompt_utils import inject_trigger_into_prompt, PromptEmbeds, concat_prompt_embeds | |
from toolkit.reference_adapter import ReferenceAdapter | |
from toolkit.sampler import get_sampler | |
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
from toolkit.saving import save_ldm_model_from_diffusers, get_ldm_state_dict_from_diffusers | |
from toolkit.sd_device_states_presets import empty_preset | |
from toolkit.train_tools import get_torch_dtype, apply_noise_offset | |
from einops import rearrange, repeat | |
import torch | |
from toolkit.pipelines import CustomStableDiffusionXLPipeline, CustomStableDiffusionPipeline, \ | |
StableDiffusionKDiffusionXLPipeline, StableDiffusionXLRefinerPipeline, FluxWithCFGPipeline | |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, T2IAdapter, DDPMScheduler, \ | |
StableDiffusionXLAdapterPipeline, StableDiffusionAdapterPipeline, DiffusionPipeline, PixArtTransformer2DModel, \ | |
StableDiffusionXLImg2ImgPipeline, LCMScheduler, Transformer2DModel, AutoencoderTiny, ControlNetModel, \ | |
StableDiffusionXLControlNetPipeline, StableDiffusionControlNetPipeline, StableDiffusion3Pipeline, \ | |
StableDiffusion3Img2ImgPipeline, PixArtSigmaPipeline, AuraFlowPipeline, AuraFlowTransformer2DModel, FluxPipeline, \ | |
FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel | |
import diffusers | |
from diffusers import \ | |
AutoencoderKL, \ | |
UNet2DConditionModel | |
from diffusers import PixArtAlphaPipeline, DPMSolverMultistepScheduler, PixArtSigmaPipeline | |
from transformers import T5EncoderModel, BitsAndBytesConfig, UMT5EncoderModel, T5TokenizerFast | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection | |
from toolkit.paths import ORIG_CONFIGS_ROOT, DIFFUSERS_CONFIGS_ROOT | |
from huggingface_hub import hf_hub_download | |
from optimum.quanto import freeze, qfloat8, quantize, QTensor, qint4 | |
from typing import TYPE_CHECKING | |
if TYPE_CHECKING: | |
from toolkit.lora_special import LoRASpecialNetwork | |
# tell it to shut up | |
diffusers.logging.set_verbosity(diffusers.logging.ERROR) | |
SD_PREFIX_VAE = "vae" | |
SD_PREFIX_UNET = "unet" | |
SD_PREFIX_REFINER_UNET = "refiner_unet" | |
SD_PREFIX_TEXT_ENCODER = "te" | |
SD_PREFIX_TEXT_ENCODER1 = "te0" | |
SD_PREFIX_TEXT_ENCODER2 = "te1" | |
# prefixed diffusers keys | |
DO_NOT_TRAIN_WEIGHTS = [ | |
"unet_time_embedding.linear_1.bias", | |
"unet_time_embedding.linear_1.weight", | |
"unet_time_embedding.linear_2.bias", | |
"unet_time_embedding.linear_2.weight", | |
"refiner_unet_time_embedding.linear_1.bias", | |
"refiner_unet_time_embedding.linear_1.weight", | |
"refiner_unet_time_embedding.linear_2.bias", | |
"refiner_unet_time_embedding.linear_2.weight", | |
] | |
DeviceStatePreset = Literal['cache_latents', 'generate'] | |
class BlankNetwork: | |
def __init__(self): | |
self.multiplier = 1.0 | |
self.is_active = True | |
self.is_merged_in = False | |
self.can_merge_in = False | |
def __enter__(self): | |
self.is_active = True | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
self.is_active = False | |
def flush(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
UNET_IN_CHANNELS = 4 # Stable Diffusion の in_channels は 4 で固定。XLも同じ。 | |
# VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8 | |
class StableDiffusion: | |
def __init__( | |
self, | |
device, | |
model_config: ModelConfig, | |
dtype='fp16', | |
custom_pipeline=None, | |
noise_scheduler=None, | |
quantize_device=None, | |
): | |
self.custom_pipeline = custom_pipeline | |
self.device = device | |
self.dtype = dtype | |
self.torch_dtype = get_torch_dtype(dtype) | |
self.device_torch = torch.device(self.device) | |
self.vae_device_torch = torch.device(self.device) if model_config.vae_device is None else torch.device( | |
model_config.vae_device) | |
self.vae_torch_dtype = get_torch_dtype(model_config.vae_dtype) | |
self.te_device_torch = torch.device(self.device) if model_config.te_device is None else torch.device( | |
model_config.te_device) | |
self.te_torch_dtype = get_torch_dtype(model_config.te_dtype) | |
self.model_config = model_config | |
self.prediction_type = "v_prediction" if self.model_config.is_v_pred else "epsilon" | |
self.device_state = None | |
self.pipeline: Union[None, 'StableDiffusionPipeline', 'CustomStableDiffusionXLPipeline', 'PixArtAlphaPipeline'] | |
self.vae: Union[None, 'AutoencoderKL'] | |
self.unet: Union[None, 'UNet2DConditionModel'] | |
self.text_encoder: Union[None, 'CLIPTextModel', List[Union['CLIPTextModel', 'CLIPTextModelWithProjection']]] | |
self.tokenizer: Union[None, 'CLIPTokenizer', List['CLIPTokenizer']] | |
self.noise_scheduler: Union[None, 'DDPMScheduler'] = noise_scheduler | |
self.refiner_unet: Union[None, 'UNet2DConditionModel'] = None | |
self.assistant_lora: Union[None, 'LoRASpecialNetwork'] = None | |
# sdxl stuff | |
self.logit_scale = None | |
self.ckppt_info = None | |
self.is_loaded = False | |
# to hold network if there is one | |
self.network = None | |
self.adapter: Union['ControlNetModel', 'T2IAdapter', 'IPAdapter', 'ReferenceAdapter', None] = None | |
self.is_xl = model_config.is_xl | |
self.is_v2 = model_config.is_v2 | |
self.is_ssd = model_config.is_ssd | |
self.is_v3 = model_config.is_v3 | |
self.is_vega = model_config.is_vega | |
self.is_pixart = model_config.is_pixart | |
self.is_auraflow = model_config.is_auraflow | |
self.is_flux = model_config.is_flux | |
self.use_text_encoder_1 = model_config.use_text_encoder_1 | |
self.use_text_encoder_2 = model_config.use_text_encoder_2 | |
self.config_file = None | |
self.is_flow_matching = False | |
if self.is_flux or self.is_v3 or self.is_auraflow or isinstance(self.noise_scheduler, CustomFlowMatchEulerDiscreteScheduler): | |
self.is_flow_matching = True | |
self.quantize_device = quantize_device if quantize_device is not None else self.device | |
self.low_vram = self.model_config.low_vram | |
# merge in and preview active with -1 weight | |
self.invert_assistant_lora = False | |
def load_model(self): | |
if self.is_loaded: | |
return | |
dtype = get_torch_dtype(self.dtype) | |
# move the betas alphas and alphas_cumprod to device. Sometimed they get stuck on cpu, not sure why | |
# self.noise_scheduler.betas = self.noise_scheduler.betas.to(self.device_torch) | |
# self.noise_scheduler.alphas = self.noise_scheduler.alphas.to(self.device_torch) | |
# self.noise_scheduler.alphas_cumprod = self.noise_scheduler.alphas_cumprod.to(self.device_torch) | |
model_path = self.model_config.name_or_path | |
if 'civitai.com' in self.model_config.name_or_path: | |
# load is a civit ai model, use the loader. | |
from toolkit.civitai import get_model_path_from_url | |
model_path = get_model_path_from_url(self.model_config.name_or_path) | |
load_args = {} | |
if self.noise_scheduler: | |
load_args['scheduler'] = self.noise_scheduler | |
if self.model_config.vae_path is not None: | |
load_args['vae'] = load_vae(self.model_config.vae_path, dtype) | |
if self.model_config.is_xl or self.model_config.is_ssd or self.model_config.is_vega: | |
if self.custom_pipeline is not None: | |
pipln = self.custom_pipeline | |
else: | |
pipln = StableDiffusionXLPipeline | |
# pipln = StableDiffusionKDiffusionXLPipeline | |
# see if path exists | |
if not os.path.exists(model_path) or os.path.isdir(model_path): | |
# try to load with default diffusers | |
pipe = pipln.from_pretrained( | |
model_path, | |
dtype=dtype, | |
device=self.device_torch, | |
# variant="fp16", | |
use_safetensors=True, | |
**load_args | |
) | |
else: | |
pipe = pipln.from_single_file( | |
model_path, | |
device=self.device_torch, | |
torch_dtype=self.torch_dtype, | |
) | |
if 'vae' in load_args and load_args['vae'] is not None: | |
pipe.vae = load_args['vae'] | |
flush() | |
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] | |
tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
for text_encoder in text_encoders: | |
text_encoder.to(self.te_device_torch, dtype=self.te_torch_dtype) | |
text_encoder.requires_grad_(False) | |
text_encoder.eval() | |
text_encoder = text_encoders | |
pipe.vae = pipe.vae.to(self.vae_device_torch, dtype=self.vae_torch_dtype) | |
if self.model_config.experimental_xl: | |
print("Experimental XL mode enabled") | |
print("Loading and injecting alt weights") | |
# load the mismatched weight and force it in | |
raw_state_dict = load_file(model_path) | |
replacement_weight = raw_state_dict['conditioner.embedders.1.model.text_projection'].clone() | |
del raw_state_dict | |
# get state dict for for 2nd text encoder | |
te1_state_dict = text_encoders[1].state_dict() | |
# replace weight with mismatched weight | |
te1_state_dict['text_projection.weight'] = replacement_weight.to(self.device_torch, dtype=dtype) | |
flush() | |
print("Injecting alt weights") | |
elif self.model_config.is_v3: | |
if self.custom_pipeline is not None: | |
pipln = self.custom_pipeline | |
else: | |
pipln = StableDiffusion3Pipeline | |
print("Loading SD3 model") | |
# assume it is the large model | |
base_model_path = "stabilityai/stable-diffusion-3.5-large" | |
print("Loading transformer") | |
subfolder = 'transformer' | |
transformer_path = model_path | |
# check if HF_DATASETS_OFFLINE or TRANSFORMERS_OFFLINE is set | |
if os.path.exists(transformer_path): | |
subfolder = None | |
transformer_path = os.path.join(transformer_path, 'transformer') | |
# check if the path is a full checkpoint. | |
te_folder_path = os.path.join(model_path, 'text_encoder') | |
# if we have the te, this folder is a full checkpoint, use it as the base | |
if os.path.exists(te_folder_path): | |
base_model_path = model_path | |
else: | |
# is remote use whatever path we were given | |
base_model_path = model_path | |
transformer = SD3Transformer2DModel.from_pretrained( | |
transformer_path, | |
subfolder=subfolder, | |
torch_dtype=dtype, | |
) | |
if not self.low_vram: | |
# for low v ram, we leave it on the cpu. Quantizes slower, but allows training on primary gpu | |
transformer.to(torch.device(self.quantize_device), dtype=dtype) | |
flush() | |
if self.model_config.lora_path is not None: | |
raise ValueError("LoRA is not supported for SD3 models currently") | |
if self.model_config.quantize: | |
quantization_type = qfloat8 | |
print("Quantizing transformer") | |
quantize(transformer, weights=quantization_type) | |
freeze(transformer) | |
transformer.to(self.device_torch) | |
else: | |
transformer.to(self.device_torch, dtype=dtype) | |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler") | |
print("Loading vae") | |
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype) | |
flush() | |
print("Loading t5") | |
tokenizer_3 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_3", torch_dtype=dtype) | |
text_encoder_3 = T5EncoderModel.from_pretrained( | |
base_model_path, | |
subfolder="text_encoder_3", | |
torch_dtype=dtype | |
) | |
text_encoder_3.to(self.device_torch, dtype=dtype) | |
flush() | |
if self.model_config.quantize: | |
print("Quantizing T5") | |
quantize(text_encoder_3, weights=qfloat8) | |
freeze(text_encoder_3) | |
flush() | |
# see if path exists | |
if not os.path.exists(model_path) or os.path.isdir(model_path): | |
try: | |
# try to load with default diffusers | |
pipe = pipln.from_pretrained( | |
base_model_path, | |
dtype=dtype, | |
device=self.device_torch, | |
tokenizer_3=tokenizer_3, | |
text_encoder_3=text_encoder_3, | |
transformer=transformer, | |
# variant="fp16", | |
use_safetensors=True, | |
repo_type="model", | |
ignore_patterns=["*.md", "*..gitattributes"], | |
**load_args | |
) | |
except Exception as e: | |
print(f"Error loading from pretrained: {e}") | |
raise e | |
else: | |
pipe = pipln.from_single_file( | |
model_path, | |
transformer=transformer, | |
device=self.device_torch, | |
torch_dtype=self.torch_dtype, | |
tokenizer_3=tokenizer_3, | |
text_encoder_3=text_encoder_3, | |
**load_args | |
) | |
flush() | |
text_encoders = [pipe.text_encoder, pipe.text_encoder_2, pipe.text_encoder_3] | |
tokenizer = [pipe.tokenizer, pipe.tokenizer_2, pipe.tokenizer_3] | |
# replace the to function with a no-op since it throws an error instead of a warning | |
# text_encoders[2].to = lambda *args, **kwargs: None | |
for text_encoder in text_encoders: | |
text_encoder.to(self.device_torch, dtype=dtype) | |
text_encoder.requires_grad_(False) | |
text_encoder.eval() | |
text_encoder = text_encoders | |
elif self.model_config.is_pixart: | |
te_kwargs = {} | |
# handle quantization of TE | |
te_is_quantized = False | |
if self.model_config.text_encoder_bits == 8: | |
te_kwargs['load_in_8bit'] = True | |
te_kwargs['device_map'] = "auto" | |
te_is_quantized = True | |
elif self.model_config.text_encoder_bits == 4: | |
te_kwargs['load_in_4bit'] = True | |
te_kwargs['device_map'] = "auto" | |
te_is_quantized = True | |
main_model_path = "PixArt-alpha/PixArt-XL-2-1024-MS" | |
if self.model_config.is_pixart_sigma: | |
main_model_path = "PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers" | |
main_model_path = model_path | |
# load the TE in 8bit mode | |
text_encoder = T5EncoderModel.from_pretrained( | |
main_model_path, | |
subfolder="text_encoder", | |
torch_dtype=self.torch_dtype, | |
**te_kwargs | |
) | |
# load the transformer | |
subfolder = "transformer" | |
# check if it is just the unet | |
if os.path.exists(model_path) and not os.path.exists(os.path.join(model_path, subfolder)): | |
subfolder = None | |
if te_is_quantized: | |
# replace the to function with a no-op since it throws an error instead of a warning | |
text_encoder.to = lambda *args, **kwargs: None | |
text_encoder.to(self.te_device_torch, dtype=self.te_torch_dtype) | |
if self.model_config.is_pixart_sigma: | |
# load the transformer only from the save | |
transformer = Transformer2DModel.from_pretrained( | |
model_path if self.model_config.unet_path is None else self.model_config.unet_path, | |
torch_dtype=self.torch_dtype, | |
subfolder='transformer' | |
) | |
pipe: PixArtSigmaPipeline = PixArtSigmaPipeline.from_pretrained( | |
main_model_path, | |
transformer=transformer, | |
text_encoder=text_encoder, | |
dtype=dtype, | |
device=self.device_torch, | |
**load_args | |
) | |
else: | |
# load the transformer only from the save | |
transformer = Transformer2DModel.from_pretrained(model_path, torch_dtype=self.torch_dtype, | |
subfolder=subfolder) | |
pipe: PixArtAlphaPipeline = PixArtAlphaPipeline.from_pretrained( | |
main_model_path, | |
transformer=transformer, | |
text_encoder=text_encoder, | |
dtype=dtype, | |
device=self.device_torch, | |
**load_args | |
).to(self.device_torch) | |
if self.model_config.unet_sample_size is not None: | |
pipe.transformer.config.sample_size = self.model_config.unet_sample_size | |
pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype) | |
flush() | |
# text_encoder = pipe.text_encoder | |
# text_encoder.to(self.device_torch, dtype=dtype) | |
text_encoder.requires_grad_(False) | |
text_encoder.eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype) | |
tokenizer = pipe.tokenizer | |
pipe.vae = pipe.vae.to(self.vae_device_torch, dtype=self.vae_torch_dtype) | |
if self.noise_scheduler is None: | |
self.noise_scheduler = pipe.scheduler | |
elif self.model_config.is_auraflow: | |
te_kwargs = {} | |
# handle quantization of TE | |
te_is_quantized = False | |
if self.model_config.text_encoder_bits == 8: | |
te_kwargs['load_in_8bit'] = True | |
te_kwargs['device_map'] = "auto" | |
te_is_quantized = True | |
elif self.model_config.text_encoder_bits == 4: | |
te_kwargs['load_in_4bit'] = True | |
te_kwargs['device_map'] = "auto" | |
te_is_quantized = True | |
main_model_path = model_path | |
# load the TE in 8bit mode | |
text_encoder = UMT5EncoderModel.from_pretrained( | |
main_model_path, | |
subfolder="text_encoder", | |
torch_dtype=self.torch_dtype, | |
**te_kwargs | |
) | |
# load the transformer | |
subfolder = "transformer" | |
# check if it is just the unet | |
if os.path.exists(model_path) and not os.path.exists(os.path.join(model_path, subfolder)): | |
subfolder = None | |
if te_is_quantized: | |
# replace the to function with a no-op since it throws an error instead of a warning | |
text_encoder.to = lambda *args, **kwargs: None | |
# load the transformer only from the save | |
transformer = AuraFlowTransformer2DModel.from_pretrained( | |
model_path if self.model_config.unet_path is None else self.model_config.unet_path, | |
torch_dtype=self.torch_dtype, | |
subfolder='transformer' | |
) | |
pipe: AuraFlowPipeline = AuraFlowPipeline.from_pretrained( | |
main_model_path, | |
transformer=transformer, | |
text_encoder=text_encoder, | |
dtype=dtype, | |
device=self.device_torch, | |
**load_args | |
) | |
pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype) | |
# patch auraflow so it can handle other aspect ratios | |
# patch_auraflow_pos_embed(pipe.transformer.pos_embed) | |
flush() | |
# text_encoder = pipe.text_encoder | |
# text_encoder.to(self.device_torch, dtype=dtype) | |
text_encoder.requires_grad_(False) | |
text_encoder.eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype) | |
tokenizer = pipe.tokenizer | |
elif self.model_config.is_flux: | |
print("Loading Flux model") | |
base_model_path = "black-forest-labs/FLUX.1-schnell" | |
print("Loading transformer") | |
subfolder = 'transformer' | |
transformer_path = model_path | |
local_files_only = False | |
# check if HF_DATASETS_OFFLINE or TRANSFORMERS_OFFLINE is set | |
if os.path.exists(transformer_path): | |
subfolder = None | |
transformer_path = os.path.join(transformer_path, 'transformer') | |
# check if the path is a full checkpoint. | |
te_folder_path = os.path.join(model_path, 'text_encoder') | |
# if we have the te, this folder is a full checkpoint, use it as the base | |
if os.path.exists(te_folder_path): | |
base_model_path = model_path | |
transformer = FluxTransformer2DModel.from_pretrained( | |
transformer_path, | |
subfolder=subfolder, | |
torch_dtype=dtype, | |
# low_cpu_mem_usage=False, | |
# device_map=None | |
) | |
if not self.low_vram: | |
# for low v ram, we leave it on the cpu. Quantizes slower, but allows training on primary gpu | |
transformer.to(torch.device(self.quantize_device), dtype=dtype) | |
flush() | |
if self.model_config.assistant_lora_path is not None or self.model_config.inference_lora_path is not None: | |
if self.model_config.inference_lora_path is not None and self.model_config.assistant_lora_path is not None: | |
raise ValueError("Cannot load both assistant lora and inference lora at the same time") | |
if self.model_config.lora_path: | |
raise ValueError("Cannot load both assistant lora and lora at the same time") | |
if not self.is_flux: | |
raise ValueError("Assistant/ inference lora is only supported for flux models currently") | |
load_lora_path = self.model_config.inference_lora_path | |
if load_lora_path is None: | |
load_lora_path = self.model_config.assistant_lora_path | |
if os.path.isdir(load_lora_path): | |
load_lora_path = os.path.join( | |
load_lora_path, "pytorch_lora_weights.safetensors" | |
) | |
elif not os.path.exists(load_lora_path): | |
print(f"Grabbing lora from the hub: {load_lora_path}") | |
new_lora_path = hf_hub_download( | |
load_lora_path, | |
filename="pytorch_lora_weights.safetensors" | |
) | |
# replace the path | |
load_lora_path = new_lora_path | |
if self.model_config.inference_lora_path is not None: | |
self.model_config.inference_lora_path = new_lora_path | |
if self.model_config.assistant_lora_path is not None: | |
self.model_config.assistant_lora_path = new_lora_path | |
if self.model_config.assistant_lora_path is not None: | |
# for flux, we assume it is flux schnell. We cannot merge in the assistant lora and unmerge it on | |
# quantized weights so it had to process unmerged (slow). Since schnell samples in just 4 steps | |
# it is better to merge it in now, and sample slowly later, otherwise training is slowed in half | |
# so we will merge in now and sample with -1 weight later | |
self.invert_assistant_lora = True | |
# trigger it to get merged in | |
self.model_config.lora_path = self.model_config.assistant_lora_path | |
if self.model_config.lora_path is not None: | |
print("Fusing in LoRA") | |
# need the pipe for peft | |
pipe: FluxPipeline = FluxPipeline( | |
scheduler=None, | |
text_encoder=None, | |
tokenizer=None, | |
text_encoder_2=None, | |
tokenizer_2=None, | |
vae=None, | |
transformer=transformer, | |
) | |
if self.low_vram: | |
# we cannot fuse the loras all at once without ooming in lowvram mode, so we have to do it in parts | |
# we can do it on the cpu but it takes about 5-10 mins vs seconds on the gpu | |
# we are going to separate it into the two transformer blocks one at a time | |
lora_state_dict = load_file(self.model_config.lora_path) | |
single_transformer_lora = {} | |
single_block_key = "transformer.single_transformer_blocks." | |
double_transformer_lora = {} | |
double_block_key = "transformer.transformer_blocks." | |
for key, value in lora_state_dict.items(): | |
if single_block_key in key: | |
single_transformer_lora[key] = value | |
elif double_block_key in key: | |
double_transformer_lora[key] = value | |
else: | |
raise ValueError(f"Unknown lora key: {key}. Cannot load this lora in low vram mode") | |
# double blocks | |
transformer.transformer_blocks = transformer.transformer_blocks.to( | |
torch.device(self.quantize_device), dtype=dtype | |
) | |
pipe.load_lora_weights(double_transformer_lora, adapter_name=f"lora1_double") | |
pipe.fuse_lora() | |
pipe.unload_lora_weights() | |
transformer.transformer_blocks = transformer.transformer_blocks.to( | |
'cpu', dtype=dtype | |
) | |
# single blocks | |
transformer.single_transformer_blocks = transformer.single_transformer_blocks.to( | |
torch.device(self.quantize_device), dtype=dtype | |
) | |
pipe.load_lora_weights(single_transformer_lora, adapter_name=f"lora1_single") | |
pipe.fuse_lora() | |
pipe.unload_lora_weights() | |
transformer.single_transformer_blocks = transformer.single_transformer_blocks.to( | |
'cpu', dtype=dtype | |
) | |
# cleanup | |
del single_transformer_lora | |
del double_transformer_lora | |
del lora_state_dict | |
flush() | |
else: | |
# need the pipe to do this unfortunately for now | |
# we have to fuse in the weights before quantizing | |
pipe.load_lora_weights(self.model_config.lora_path, adapter_name="lora1") | |
pipe.fuse_lora() | |
# unfortunately, not an easier way with peft | |
pipe.unload_lora_weights() | |
flush() | |
if self.model_config.quantize: | |
quantization_type = qfloat8 | |
print("Quantizing transformer") | |
quantize(transformer, weights=quantization_type) | |
freeze(transformer) | |
transformer.to(self.device_torch) | |
else: | |
transformer.to(self.device_torch, dtype=dtype) | |
flush() | |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler") | |
print("Loading vae") | |
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype) | |
flush() | |
print("Loading t5") | |
tokenizer_2 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_2", torch_dtype=dtype) | |
text_encoder_2 = T5EncoderModel.from_pretrained(base_model_path, subfolder="text_encoder_2", | |
torch_dtype=dtype) | |
text_encoder_2.to(self.device_torch, dtype=dtype) | |
flush() | |
print("Quantizing T5") | |
quantize(text_encoder_2, weights=qfloat8) | |
freeze(text_encoder_2) | |
flush() | |
print("Loading clip") | |
text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder="text_encoder", torch_dtype=dtype) | |
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer", torch_dtype=dtype) | |
text_encoder.to(self.device_torch, dtype=dtype) | |
print("making pipe") | |
pipe: FluxPipeline = FluxPipeline( | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=None, | |
tokenizer_2=tokenizer_2, | |
vae=vae, | |
transformer=None, | |
) | |
pipe.text_encoder_2 = text_encoder_2 | |
pipe.transformer = transformer | |
print("preparing") | |
text_encoder = [pipe.text_encoder, pipe.text_encoder_2] | |
tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
text_encoder[0].to(self.device_torch) | |
text_encoder[0].requires_grad_(False) | |
text_encoder[0].eval() | |
text_encoder[1].to(self.device_torch) | |
text_encoder[1].requires_grad_(False) | |
text_encoder[1].eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
else: | |
if self.custom_pipeline is not None: | |
pipln = self.custom_pipeline | |
else: | |
pipln = StableDiffusionPipeline | |
if self.model_config.text_encoder_bits < 16: | |
# this is only supported for T5 models for now | |
te_kwargs = {} | |
# handle quantization of TE | |
te_is_quantized = False | |
if self.model_config.text_encoder_bits == 8: | |
te_kwargs['load_in_8bit'] = True | |
te_kwargs['device_map'] = "auto" | |
te_is_quantized = True | |
elif self.model_config.text_encoder_bits == 4: | |
te_kwargs['load_in_4bit'] = True | |
te_kwargs['device_map'] = "auto" | |
te_is_quantized = True | |
text_encoder = T5EncoderModel.from_pretrained( | |
model_path, | |
subfolder="text_encoder", | |
torch_dtype=self.te_torch_dtype, | |
**te_kwargs | |
) | |
# replace the to function with a no-op since it throws an error instead of a warning | |
text_encoder.to = lambda *args, **kwargs: None | |
load_args['text_encoder'] = text_encoder | |
# see if path exists | |
if not os.path.exists(model_path) or os.path.isdir(model_path): | |
# try to load with default diffusers | |
pipe = pipln.from_pretrained( | |
model_path, | |
dtype=dtype, | |
device=self.device_torch, | |
load_safety_checker=False, | |
requires_safety_checker=False, | |
safety_checker=None, | |
# variant="fp16", | |
trust_remote_code=True, | |
**load_args | |
) | |
else: | |
pipe = pipln.from_single_file( | |
model_path, | |
dtype=dtype, | |
device=self.device_torch, | |
load_safety_checker=False, | |
requires_safety_checker=False, | |
torch_dtype=self.torch_dtype, | |
safety_checker=None, | |
trust_remote_code=True, | |
**load_args | |
) | |
flush() | |
pipe.register_to_config(requires_safety_checker=False) | |
text_encoder = pipe.text_encoder | |
text_encoder.to(self.te_device_torch, dtype=self.te_torch_dtype) | |
text_encoder.requires_grad_(False) | |
text_encoder.eval() | |
tokenizer = pipe.tokenizer | |
# scheduler doesn't get set sometimes, so we set it here | |
pipe.scheduler = self.noise_scheduler | |
# add hacks to unet to help training | |
# pipe.unet = prepare_unet_for_training(pipe.unet) | |
if self.is_pixart or self.is_v3 or self.is_auraflow or self.is_flux: | |
# pixart and sd3 dont use a unet | |
self.unet = pipe.transformer | |
else: | |
self.unet: 'UNet2DConditionModel' = pipe.unet | |
self.vae: 'AutoencoderKL' = pipe.vae.to(self.vae_device_torch, dtype=self.vae_torch_dtype) | |
self.vae.eval() | |
self.vae.requires_grad_(False) | |
VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1) | |
self.vae_scale_factor = VAE_SCALE_FACTOR | |
self.unet.to(self.device_torch, dtype=dtype) | |
self.unet.requires_grad_(False) | |
self.unet.eval() | |
# load any loras we have | |
if self.model_config.lora_path is not None and not self.is_flux: | |
pipe.load_lora_weights(self.model_config.lora_path, adapter_name="lora1") | |
pipe.fuse_lora() | |
# unfortunately, not an easier way with peft | |
pipe.unload_lora_weights() | |
self.tokenizer = tokenizer | |
self.text_encoder = text_encoder | |
self.pipeline = pipe | |
self.load_refiner() | |
self.is_loaded = True | |
if self.model_config.assistant_lora_path is not None: | |
print("Loading assistant lora") | |
self.assistant_lora: 'LoRASpecialNetwork' = load_assistant_lora_from_path( | |
self.model_config.assistant_lora_path, self) | |
if self.invert_assistant_lora: | |
# invert and disable during training | |
self.assistant_lora.multiplier = -1.0 | |
self.assistant_lora.is_active = False | |
if self.model_config.inference_lora_path is not None: | |
print("Loading inference lora") | |
self.assistant_lora: 'LoRASpecialNetwork' = load_assistant_lora_from_path( | |
self.model_config.inference_lora_path, self) | |
# disable during training | |
self.assistant_lora.is_active = False | |
if self.is_pixart and self.vae_scale_factor == 16: | |
# TODO make our own pipeline? | |
# we generate an image 2x larger, so we need to copy the sizes from larger ones down | |
# ASPECT_RATIO_1024_BIN, ASPECT_RATIO_512_BIN, ASPECT_RATIO_2048_BIN, ASPECT_RATIO_256_BIN | |
for key in ASPECT_RATIO_256_BIN.keys(): | |
ASPECT_RATIO_256_BIN[key] = [ASPECT_RATIO_256_BIN[key][0] * 2, ASPECT_RATIO_256_BIN[key][1] * 2] | |
for key in ASPECT_RATIO_512_BIN.keys(): | |
ASPECT_RATIO_512_BIN[key] = [ASPECT_RATIO_512_BIN[key][0] * 2, ASPECT_RATIO_512_BIN[key][1] * 2] | |
for key in ASPECT_RATIO_1024_BIN.keys(): | |
ASPECT_RATIO_1024_BIN[key] = [ASPECT_RATIO_1024_BIN[key][0] * 2, ASPECT_RATIO_1024_BIN[key][1] * 2] | |
for key in ASPECT_RATIO_2048_BIN.keys(): | |
ASPECT_RATIO_2048_BIN[key] = [ASPECT_RATIO_2048_BIN[key][0] * 2, ASPECT_RATIO_2048_BIN[key][1] * 2] | |
def te_train(self): | |
if isinstance(self.text_encoder, list): | |
for te in self.text_encoder: | |
te.train() | |
else: | |
self.text_encoder.train() | |
def te_eval(self): | |
if isinstance(self.text_encoder, list): | |
for te in self.text_encoder: | |
te.eval() | |
else: | |
self.text_encoder.eval() | |
def load_refiner(self): | |
# for now, we are just going to rely on the TE from the base model | |
# which is TE2 for SDXL and TE for SD (no refiner currently) | |
# and completely ignore a TE that may or may not be packaged with the refiner | |
if self.model_config.refiner_name_or_path is not None: | |
refiner_config_path = os.path.join(ORIG_CONFIGS_ROOT, 'sd_xl_refiner.yaml') | |
# load the refiner model | |
dtype = get_torch_dtype(self.dtype) | |
model_path = self.model_config.refiner_name_or_path | |
if not os.path.exists(model_path) or os.path.isdir(model_path): | |
# TODO only load unet?? | |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
model_path, | |
dtype=dtype, | |
device=self.device_torch, | |
# variant="fp16", | |
use_safetensors=True, | |
).to(self.device_torch) | |
else: | |
refiner = StableDiffusionXLImg2ImgPipeline.from_single_file( | |
model_path, | |
dtype=dtype, | |
device=self.device_torch, | |
torch_dtype=self.torch_dtype, | |
original_config_file=refiner_config_path, | |
).to(self.device_torch) | |
self.refiner_unet = refiner.unet | |
del refiner | |
flush() | |
def generate_images( | |
self, | |
image_configs: List[GenerateImageConfig], | |
sampler=None, | |
pipeline: Union[None, StableDiffusionPipeline, StableDiffusionXLPipeline] = None, | |
): | |
merge_multiplier = 1.0 | |
flush() | |
# if using assistant, unfuse it | |
if self.model_config.assistant_lora_path is not None: | |
print("Unloading assistant lora") | |
if self.invert_assistant_lora: | |
self.assistant_lora.is_active = True | |
# move weights on to the device | |
self.assistant_lora.force_to(self.device_torch, self.torch_dtype) | |
else: | |
self.assistant_lora.is_active = False | |
if self.model_config.inference_lora_path is not None: | |
print("Loading inference lora") | |
self.assistant_lora.is_active = True | |
# move weights on to the device | |
self.assistant_lora.force_to(self.device_torch, self.torch_dtype) | |
if self.network is not None: | |
self.network.eval() | |
network = self.network | |
# check if we have the same network weight for all samples. If we do, we can merge in th | |
# the network to drastically speed up inference | |
unique_network_weights = set([x.network_multiplier for x in image_configs]) | |
if len(unique_network_weights) == 1 and self.network.can_merge_in: | |
can_merge_in = True | |
merge_multiplier = unique_network_weights.pop() | |
network.merge_in(merge_weight=merge_multiplier) | |
else: | |
network = BlankNetwork() | |
self.save_device_state() | |
self.set_device_state_preset('generate') | |
# save current seed state for training | |
rng_state = torch.get_rng_state() | |
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None | |
if pipeline is None: | |
noise_scheduler = self.noise_scheduler | |
if sampler is not None: | |
if sampler.startswith("sample_"): # sample_dpmpp_2m | |
# using ksampler | |
noise_scheduler = get_sampler( | |
'lms', { | |
"prediction_type": self.prediction_type, | |
}) | |
else: | |
noise_scheduler = get_sampler( | |
sampler, | |
{ | |
"prediction_type": self.prediction_type, | |
}, | |
'sd' if not self.is_pixart else 'pixart' | |
) | |
try: | |
noise_scheduler = noise_scheduler.to(self.device_torch, self.torch_dtype) | |
except: | |
pass | |
if sampler.startswith("sample_") and self.is_xl: | |
# using kdiffusion | |
Pipe = StableDiffusionKDiffusionXLPipeline | |
elif self.is_xl: | |
Pipe = StableDiffusionXLPipeline | |
elif self.is_v3: | |
Pipe = StableDiffusion3Pipeline | |
else: | |
Pipe = StableDiffusionPipeline | |
extra_args = {} | |
if self.adapter is not None: | |
if isinstance(self.adapter, T2IAdapter): | |
if self.is_xl: | |
Pipe = StableDiffusionXLAdapterPipeline | |
else: | |
Pipe = StableDiffusionAdapterPipeline | |
extra_args['adapter'] = self.adapter | |
elif isinstance(self.adapter, ControlNetModel): | |
if self.is_xl: | |
Pipe = StableDiffusionXLControlNetPipeline | |
else: | |
Pipe = StableDiffusionControlNetPipeline | |
extra_args['controlnet'] = self.adapter | |
elif isinstance(self.adapter, ReferenceAdapter): | |
# pass the noise scheduler to the adapter | |
self.adapter.noise_scheduler = noise_scheduler | |
else: | |
if self.is_xl: | |
extra_args['add_watermarker'] = False | |
# TODO add clip skip | |
if self.is_xl: | |
pipeline = Pipe( | |
vae=self.vae, | |
unet=self.unet, | |
text_encoder=self.text_encoder[0], | |
text_encoder_2=self.text_encoder[1], | |
tokenizer=self.tokenizer[0], | |
tokenizer_2=self.tokenizer[1], | |
scheduler=noise_scheduler, | |
**extra_args | |
).to(self.device_torch) | |
pipeline.watermark = None | |
elif self.is_flux: | |
if self.model_config.use_flux_cfg: | |
pipeline = FluxWithCFGPipeline( | |
vae=self.vae, | |
transformer=self.unet, | |
text_encoder=self.text_encoder[0], | |
text_encoder_2=self.text_encoder[1], | |
tokenizer=self.tokenizer[0], | |
tokenizer_2=self.tokenizer[1], | |
scheduler=noise_scheduler, | |
**extra_args | |
) | |
else: | |
pipeline = FluxPipeline( | |
vae=self.vae, | |
transformer=self.unet, | |
text_encoder=self.text_encoder[0], | |
text_encoder_2=self.text_encoder[1], | |
tokenizer=self.tokenizer[0], | |
tokenizer_2=self.tokenizer[1], | |
scheduler=noise_scheduler, | |
**extra_args | |
) | |
pipeline.watermark = None | |
elif self.is_v3: | |
pipeline = Pipe( | |
vae=self.vae, | |
transformer=self.unet, | |
text_encoder=self.text_encoder[0], | |
text_encoder_2=self.text_encoder[1], | |
text_encoder_3=self.text_encoder[2], | |
tokenizer=self.tokenizer[0], | |
tokenizer_2=self.tokenizer[1], | |
tokenizer_3=self.tokenizer[2], | |
scheduler=noise_scheduler, | |
**extra_args | |
) | |
elif self.is_pixart: | |
pipeline = PixArtSigmaPipeline( | |
vae=self.vae, | |
transformer=self.unet, | |
text_encoder=self.text_encoder, | |
tokenizer=self.tokenizer, | |
scheduler=noise_scheduler, | |
**extra_args | |
) | |
elif self.is_auraflow: | |
pipeline = AuraFlowPipeline( | |
vae=self.vae, | |
transformer=self.unet, | |
text_encoder=self.text_encoder, | |
tokenizer=self.tokenizer, | |
scheduler=noise_scheduler, | |
**extra_args | |
) | |
else: | |
pipeline = Pipe( | |
vae=self.vae, | |
unet=self.unet, | |
text_encoder=self.text_encoder, | |
tokenizer=self.tokenizer, | |
scheduler=noise_scheduler, | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
**extra_args | |
) | |
flush() | |
# disable progress bar | |
pipeline.set_progress_bar_config(disable=True) | |
if sampler.startswith("sample_"): | |
pipeline.set_scheduler(sampler) | |
refiner_pipeline = None | |
if self.refiner_unet: | |
# build refiner pipeline | |
refiner_pipeline = StableDiffusionXLImg2ImgPipeline( | |
vae=pipeline.vae, | |
unet=self.refiner_unet, | |
text_encoder=None, | |
text_encoder_2=pipeline.text_encoder_2, | |
tokenizer=None, | |
tokenizer_2=pipeline.tokenizer_2, | |
scheduler=pipeline.scheduler, | |
add_watermarker=False, | |
requires_aesthetics_score=True, | |
).to(self.device_torch) | |
# refiner_pipeline.register_to_config(requires_aesthetics_score=False) | |
refiner_pipeline.watermark = None | |
refiner_pipeline.set_progress_bar_config(disable=True) | |
flush() | |
start_multiplier = 1.0 | |
if self.network is not None: | |
start_multiplier = self.network.multiplier | |
# pipeline.to(self.device_torch) | |
with network: | |
with torch.no_grad(): | |
if self.network is not None: | |
assert self.network.is_active | |
for i in tqdm(range(len(image_configs)), desc=f"Generating Images", leave=False): | |
gen_config = image_configs[i] | |
extra = {} | |
validation_image = None | |
if self.adapter is not None and gen_config.adapter_image_path is not None: | |
validation_image = Image.open(gen_config.adapter_image_path).convert("RGB") | |
if isinstance(self.adapter, T2IAdapter): | |
# not sure why this is double?? | |
validation_image = validation_image.resize((gen_config.width * 2, gen_config.height * 2)) | |
extra['image'] = validation_image | |
extra['adapter_conditioning_scale'] = gen_config.adapter_conditioning_scale | |
if isinstance(self.adapter, ControlNetModel): | |
validation_image = validation_image.resize((gen_config.width, gen_config.height)) | |
extra['image'] = validation_image | |
extra['controlnet_conditioning_scale'] = gen_config.adapter_conditioning_scale | |
if isinstance(self.adapter, IPAdapter) or isinstance(self.adapter, ClipVisionAdapter): | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
validation_image = transform(validation_image) | |
if isinstance(self.adapter, CustomAdapter): | |
# todo allow loading multiple | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
validation_image = transform(validation_image) | |
self.adapter.num_images = 1 | |
if isinstance(self.adapter, ReferenceAdapter): | |
# need -1 to 1 | |
validation_image = transforms.ToTensor()(validation_image) | |
validation_image = validation_image * 2.0 - 1.0 | |
validation_image = validation_image.unsqueeze(0) | |
self.adapter.set_reference_images(validation_image) | |
if self.network is not None: | |
self.network.multiplier = gen_config.network_multiplier | |
torch.manual_seed(gen_config.seed) | |
torch.cuda.manual_seed(gen_config.seed) | |
if self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter) \ | |
and gen_config.adapter_image_path is not None: | |
# run through the adapter to saturate the embeds | |
conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(validation_image) | |
self.adapter(conditional_clip_embeds) | |
if self.adapter is not None and isinstance(self.adapter, CustomAdapter): | |
# handle condition the prompts | |
gen_config.prompt = self.adapter.condition_prompt( | |
gen_config.prompt, | |
is_unconditional=False, | |
) | |
gen_config.prompt_2 = gen_config.prompt | |
gen_config.negative_prompt = self.adapter.condition_prompt( | |
gen_config.negative_prompt, | |
is_unconditional=True, | |
) | |
gen_config.negative_prompt_2 = gen_config.negative_prompt | |
if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and validation_image is not None: | |
self.adapter.trigger_pre_te( | |
tensors_0_1=validation_image, | |
is_training=False, | |
has_been_preprocessed=False, | |
quad_count=4 | |
) | |
# encode the prompt ourselves so we can do fun stuff with embeddings | |
if isinstance(self.adapter, CustomAdapter): | |
self.adapter.is_unconditional_run = False | |
conditional_embeds = self.encode_prompt(gen_config.prompt, gen_config.prompt_2, force_all=True) | |
if isinstance(self.adapter, CustomAdapter): | |
self.adapter.is_unconditional_run = True | |
unconditional_embeds = self.encode_prompt( | |
gen_config.negative_prompt, gen_config.negative_prompt_2, force_all=True | |
) | |
if isinstance(self.adapter, CustomAdapter): | |
self.adapter.is_unconditional_run = False | |
# allow any manipulations to take place to embeddings | |
gen_config.post_process_embeddings( | |
conditional_embeds, | |
unconditional_embeds, | |
) | |
if self.adapter is not None and isinstance(self.adapter, IPAdapter) \ | |
and gen_config.adapter_image_path is not None: | |
# apply the image projection | |
conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(validation_image) | |
unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(validation_image, | |
True) | |
conditional_embeds = self.adapter(conditional_embeds, conditional_clip_embeds, is_unconditional=False) | |
unconditional_embeds = self.adapter(unconditional_embeds, unconditional_clip_embeds, is_unconditional=True) | |
if self.adapter is not None and isinstance(self.adapter, | |
CustomAdapter) and validation_image is not None: | |
conditional_embeds = self.adapter.condition_encoded_embeds( | |
tensors_0_1=validation_image, | |
prompt_embeds=conditional_embeds, | |
is_training=False, | |
has_been_preprocessed=False, | |
is_generating_samples=True, | |
) | |
unconditional_embeds = self.adapter.condition_encoded_embeds( | |
tensors_0_1=validation_image, | |
prompt_embeds=unconditional_embeds, | |
is_training=False, | |
has_been_preprocessed=False, | |
is_unconditional=True, | |
is_generating_samples=True, | |
) | |
if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and len( | |
gen_config.extra_values) > 0: | |
extra_values = torch.tensor([gen_config.extra_values], device=self.device_torch, | |
dtype=self.torch_dtype) | |
# apply extra values to the embeddings | |
self.adapter.add_extra_values(extra_values, is_unconditional=False) | |
self.adapter.add_extra_values(torch.zeros_like(extra_values), is_unconditional=True) | |
pass # todo remove, for debugging | |
if self.refiner_unet is not None and gen_config.refiner_start_at < 1.0: | |
# if we have a refiner loaded, set the denoising end at the refiner start | |
extra['denoising_end'] = gen_config.refiner_start_at | |
extra['output_type'] = 'latent' | |
if not self.is_xl: | |
raise ValueError("Refiner is only supported for XL models") | |
conditional_embeds = conditional_embeds.to(self.device_torch, dtype=self.unet.dtype) | |
unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=self.unet.dtype) | |
if self.is_xl: | |
# fix guidance rescale for sdxl | |
# was trained on 0.7 (I believe) | |
grs = gen_config.guidance_rescale | |
# if grs is None or grs < 0.00001: | |
# grs = 0.7 | |
# grs = 0.0 | |
if sampler.startswith("sample_"): | |
extra['use_karras_sigmas'] = True | |
extra = { | |
**extra, | |
**gen_config.extra_kwargs, | |
} | |
img = pipeline( | |
# prompt=gen_config.prompt, | |
# prompt_2=gen_config.prompt_2, | |
prompt_embeds=conditional_embeds.text_embeds, | |
pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
negative_prompt_embeds=unconditional_embeds.text_embeds, | |
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds, | |
# negative_prompt=gen_config.negative_prompt, | |
# negative_prompt_2=gen_config.negative_prompt_2, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
guidance_rescale=grs, | |
latents=gen_config.latents, | |
**extra | |
).images[0] | |
elif self.is_v3: | |
img = pipeline( | |
prompt_embeds=conditional_embeds.text_embeds, | |
pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
negative_prompt_embeds=unconditional_embeds.text_embeds, | |
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
**extra | |
).images[0] | |
elif self.is_flux: | |
if self.model_config.use_flux_cfg: | |
img = pipeline( | |
prompt_embeds=conditional_embeds.text_embeds, | |
pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
negative_prompt_embeds=unconditional_embeds.text_embeds, | |
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
**extra | |
).images[0] | |
else: | |
img = pipeline( | |
prompt_embeds=conditional_embeds.text_embeds, | |
pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
# negative_prompt_embeds=unconditional_embeds.text_embeds, | |
# negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
**extra | |
).images[0] | |
elif self.is_pixart: | |
# needs attention masks for some reason | |
img = pipeline( | |
prompt=None, | |
prompt_embeds=conditional_embeds.text_embeds.to(self.device_torch, dtype=self.unet.dtype), | |
prompt_attention_mask=conditional_embeds.attention_mask.to(self.device_torch, | |
dtype=self.unet.dtype), | |
negative_prompt_embeds=unconditional_embeds.text_embeds.to(self.device_torch, | |
dtype=self.unet.dtype), | |
negative_prompt_attention_mask=unconditional_embeds.attention_mask.to(self.device_torch, | |
dtype=self.unet.dtype), | |
negative_prompt=None, | |
# negative_prompt=gen_config.negative_prompt, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
**extra | |
).images[0] | |
elif self.is_auraflow: | |
pipeline: AuraFlowPipeline = pipeline | |
img = pipeline( | |
prompt=None, | |
prompt_embeds=conditional_embeds.text_embeds.to(self.device_torch, dtype=self.unet.dtype), | |
prompt_attention_mask=conditional_embeds.attention_mask.to(self.device_torch, | |
dtype=self.unet.dtype), | |
negative_prompt_embeds=unconditional_embeds.text_embeds.to(self.device_torch, | |
dtype=self.unet.dtype), | |
negative_prompt_attention_mask=unconditional_embeds.attention_mask.to(self.device_torch, | |
dtype=self.unet.dtype), | |
negative_prompt=None, | |
# negative_prompt=gen_config.negative_prompt, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
**extra | |
).images[0] | |
else: | |
img = pipeline( | |
# prompt=gen_config.prompt, | |
prompt_embeds=conditional_embeds.text_embeds, | |
negative_prompt_embeds=unconditional_embeds.text_embeds, | |
# negative_prompt=gen_config.negative_prompt, | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
**extra | |
).images[0] | |
if self.refiner_unet is not None and gen_config.refiner_start_at < 1.0: | |
# slide off just the last 1280 on the last dim as refiner does not use first text encoder | |
# todo, should we just use the Text encoder for the refiner? Fine tuned versions will differ | |
refiner_text_embeds = conditional_embeds.text_embeds[:, :, -1280:] | |
refiner_unconditional_text_embeds = unconditional_embeds.text_embeds[:, :, -1280:] | |
# run through refiner | |
img = refiner_pipeline( | |
# prompt=gen_config.prompt, | |
# prompt_2=gen_config.prompt_2, | |
# slice these as it does not use both text encoders | |
# height=gen_config.height, | |
# width=gen_config.width, | |
prompt_embeds=refiner_text_embeds, | |
pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
negative_prompt_embeds=refiner_unconditional_text_embeds, | |
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
guidance_rescale=grs, | |
denoising_start=gen_config.refiner_start_at, | |
denoising_end=gen_config.num_inference_steps, | |
image=img.unsqueeze(0) | |
).images[0] | |
gen_config.save_image(img, i) | |
gen_config.log_image(img, i) | |
if self.adapter is not None and isinstance(self.adapter, ReferenceAdapter): | |
self.adapter.clear_memory() | |
# clear pipeline and cache to reduce vram usage | |
del pipeline | |
if refiner_pipeline is not None: | |
del refiner_pipeline | |
torch.cuda.empty_cache() | |
# restore training state | |
torch.set_rng_state(rng_state) | |
if cuda_rng_state is not None: | |
torch.cuda.set_rng_state(cuda_rng_state) | |
self.restore_device_state() | |
if self.network is not None: | |
self.network.train() | |
self.network.multiplier = start_multiplier | |
self.unet.to(self.device_torch, dtype=self.torch_dtype) | |
if network.is_merged_in: | |
network.merge_out(merge_multiplier) | |
# self.tokenizer.to(original_device_dict['tokenizer']) | |
# refuse loras | |
if self.model_config.assistant_lora_path is not None: | |
print("Loading assistant lora") | |
if self.invert_assistant_lora: | |
self.assistant_lora.is_active = False | |
# move weights off the device | |
self.assistant_lora.force_to('cpu', self.torch_dtype) | |
else: | |
self.assistant_lora.is_active = True | |
if self.model_config.inference_lora_path is not None: | |
print("Unloading inference lora") | |
self.assistant_lora.is_active = False | |
# move weights off the device | |
self.assistant_lora.force_to('cpu', self.torch_dtype) | |
flush() | |
def get_latent_noise( | |
self, | |
height=None, | |
width=None, | |
pixel_height=None, | |
pixel_width=None, | |
batch_size=1, | |
noise_offset=0.0, | |
): | |
VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1) | |
if height is None and pixel_height is None: | |
raise ValueError("height or pixel_height must be specified") | |
if width is None and pixel_width is None: | |
raise ValueError("width or pixel_width must be specified") | |
if height is None: | |
height = pixel_height // VAE_SCALE_FACTOR | |
if width is None: | |
width = pixel_width // VAE_SCALE_FACTOR | |
num_channels = self.unet.config['in_channels'] | |
if self.is_flux: | |
# has 64 channels in for some reason | |
num_channels = 16 | |
noise = torch.randn( | |
( | |
batch_size, | |
num_channels, | |
height, | |
width, | |
), | |
device=self.unet.device, | |
) | |
noise = apply_noise_offset(noise, noise_offset) | |
return noise | |
def get_time_ids_from_latents(self, latents: torch.Tensor, requires_aesthetic_score=False): | |
VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1) | |
if self.is_xl: | |
bs, ch, h, w = list(latents.shape) | |
height = h * VAE_SCALE_FACTOR | |
width = w * VAE_SCALE_FACTOR | |
dtype = latents.dtype | |
# just do it without any cropping nonsense | |
target_size = (height, width) | |
original_size = (height, width) | |
crops_coords_top_left = (0, 0) | |
if requires_aesthetic_score: | |
# refiner | |
# https://huggingface.co/papers/2307.01952 | |
aesthetic_score = 6.0 # simulate one | |
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) | |
else: | |
add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
add_time_ids = torch.tensor([add_time_ids]) | |
add_time_ids = add_time_ids.to(latents.device, dtype=dtype) | |
batch_time_ids = torch.cat( | |
[add_time_ids for _ in range(bs)] | |
) | |
return batch_time_ids | |
else: | |
return None | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor | |
) -> torch.FloatTensor: | |
original_samples_chunks = torch.chunk(original_samples, original_samples.shape[0], dim=0) | |
noise_chunks = torch.chunk(noise, noise.shape[0], dim=0) | |
timesteps_chunks = torch.chunk(timesteps, timesteps.shape[0], dim=0) | |
if len(timesteps_chunks) == 1 and len(timesteps_chunks) != len(original_samples_chunks): | |
timesteps_chunks = [timesteps_chunks[0]] * len(original_samples_chunks) | |
noisy_latents_chunks = [] | |
for idx in range(original_samples.shape[0]): | |
noisy_latents = self.noise_scheduler.add_noise(original_samples_chunks[idx], noise_chunks[idx], | |
timesteps_chunks[idx]) | |
noisy_latents_chunks.append(noisy_latents) | |
noisy_latents = torch.cat(noisy_latents_chunks, dim=0) | |
return noisy_latents | |
def predict_noise( | |
self, | |
latents: torch.Tensor, | |
text_embeddings: Union[PromptEmbeds, None] = None, | |
timestep: Union[int, torch.Tensor] = 1, | |
guidance_scale=7.5, | |
guidance_rescale=0, | |
add_time_ids=None, | |
conditional_embeddings: Union[PromptEmbeds, None] = None, | |
unconditional_embeddings: Union[PromptEmbeds, None] = None, | |
is_input_scaled=False, | |
detach_unconditional=False, | |
rescale_cfg=None, | |
return_conditional_pred=False, | |
guidance_embedding_scale=1.0, | |
**kwargs, | |
): | |
conditional_pred = None | |
# get the embeddings | |
if text_embeddings is None and conditional_embeddings is None: | |
raise ValueError("Either text_embeddings or conditional_embeddings must be specified") | |
if text_embeddings is None and unconditional_embeddings is not None: | |
text_embeddings = concat_prompt_embeds([ | |
unconditional_embeddings, # negative embedding | |
conditional_embeddings, # positive embedding | |
]) | |
elif text_embeddings is None and conditional_embeddings is not None: | |
# not doing cfg | |
text_embeddings = conditional_embeddings | |
# CFG is comparing neg and positive, if we have concatenated embeddings | |
# then we are doing it, otherwise we are not and takes half the time. | |
do_classifier_free_guidance = True | |
# check if batch size of embeddings matches batch size of latents | |
if latents.shape[0] == text_embeddings.text_embeds.shape[0]: | |
do_classifier_free_guidance = False | |
elif latents.shape[0] * 2 != text_embeddings.text_embeds.shape[0]: | |
raise ValueError("Batch size of latents must be the same or half the batch size of text embeddings") | |
latents = latents.to(self.device_torch) | |
text_embeddings = text_embeddings.to(self.device_torch) | |
timestep = timestep.to(self.device_torch) | |
# if timestep is zero dim, unsqueeze it | |
if len(timestep.shape) == 0: | |
timestep = timestep.unsqueeze(0) | |
# if we only have 1 timestep, we can just use the same timestep for all | |
if timestep.shape[0] == 1 and latents.shape[0] > 1: | |
# check if it is rank 1 or 2 | |
if len(timestep.shape) == 1: | |
timestep = timestep.repeat(latents.shape[0]) | |
else: | |
timestep = timestep.repeat(latents.shape[0], 0) | |
# handle t2i adapters | |
if 'down_intrablock_additional_residuals' in kwargs: | |
# go through each item and concat if doing cfg and it doesnt have the same shape | |
for idx, item in enumerate(kwargs['down_intrablock_additional_residuals']): | |
if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]: | |
kwargs['down_intrablock_additional_residuals'][idx] = torch.cat([item] * 2, dim=0) | |
# handle controlnet | |
if 'down_block_additional_residuals' in kwargs and 'mid_block_additional_residual' in kwargs: | |
# go through each item and concat if doing cfg and it doesnt have the same shape | |
for idx, item in enumerate(kwargs['down_block_additional_residuals']): | |
if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]: | |
kwargs['down_block_additional_residuals'][idx] = torch.cat([item] * 2, dim=0) | |
for idx, item in enumerate(kwargs['mid_block_additional_residual']): | |
if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]: | |
kwargs['mid_block_additional_residual'][idx] = torch.cat([item] * 2, dim=0) | |
def scale_model_input(model_input, timestep_tensor): | |
if is_input_scaled: | |
return model_input | |
mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0) | |
timestep_chunks = torch.chunk(timestep_tensor, timestep_tensor.shape[0], dim=0) | |
out_chunks = [] | |
# unsqueeze if timestep is zero dim | |
for idx in range(model_input.shape[0]): | |
# if scheduler has step_index | |
if hasattr(self.noise_scheduler, '_step_index'): | |
self.noise_scheduler._step_index = None | |
out_chunks.append( | |
self.noise_scheduler.scale_model_input(mi_chunks[idx], timestep_chunks[idx]) | |
) | |
return torch.cat(out_chunks, dim=0) | |
if self.is_xl: | |
with torch.no_grad(): | |
# 16, 6 for bs of 4 | |
if add_time_ids is None: | |
add_time_ids = self.get_time_ids_from_latents(latents) | |
if do_classifier_free_guidance: | |
# todo check this with larget batches | |
add_time_ids = torch.cat([add_time_ids] * 2) | |
if do_classifier_free_guidance: | |
latent_model_input = torch.cat([latents] * 2) | |
timestep = torch.cat([timestep] * 2) | |
else: | |
latent_model_input = latents | |
latent_model_input = scale_model_input(latent_model_input, timestep) | |
added_cond_kwargs = { | |
# todo can we zero here the second text encoder? or match a blank string? | |
"text_embeds": text_embeddings.pooled_embeds, | |
"time_ids": add_time_ids, | |
} | |
if self.model_config.refiner_name_or_path is not None: | |
# we have the refiner on the second half of everything. Do Both | |
if do_classifier_free_guidance: | |
raise ValueError("Refiner is not supported with classifier free guidance") | |
if self.unet.training: | |
input_chunks = torch.chunk(latent_model_input, 2, dim=0) | |
timestep_chunks = torch.chunk(timestep, 2, dim=0) | |
added_cond_kwargs_chunked = { | |
"text_embeds": torch.chunk(text_embeddings.pooled_embeds, 2, dim=0), | |
"time_ids": torch.chunk(add_time_ids, 2, dim=0), | |
} | |
text_embeds_chunks = torch.chunk(text_embeddings.text_embeds, 2, dim=0) | |
# predict the noise residual | |
base_pred = self.unet( | |
input_chunks[0], | |
timestep_chunks[0], | |
encoder_hidden_states=text_embeds_chunks[0], | |
added_cond_kwargs={ | |
"text_embeds": added_cond_kwargs_chunked['text_embeds'][0], | |
"time_ids": added_cond_kwargs_chunked['time_ids'][0], | |
}, | |
**kwargs, | |
).sample | |
refiner_pred = self.refiner_unet( | |
input_chunks[1], | |
timestep_chunks[1], | |
encoder_hidden_states=text_embeds_chunks[1][:, :, -1280:], | |
# just use the first second text encoder | |
added_cond_kwargs={ | |
"text_embeds": added_cond_kwargs_chunked['text_embeds'][1], | |
# "time_ids": added_cond_kwargs_chunked['time_ids'][1], | |
"time_ids": self.get_time_ids_from_latents(input_chunks[1], requires_aesthetic_score=True), | |
}, | |
**kwargs, | |
).sample | |
noise_pred = torch.cat([base_pred, refiner_pred], dim=0) | |
else: | |
noise_pred = self.refiner_unet( | |
latent_model_input, | |
timestep, | |
encoder_hidden_states=text_embeddings.text_embeds[:, :, -1280:], | |
# just use the first second text encoder | |
added_cond_kwargs={ | |
"text_embeds": text_embeddings.pooled_embeds, | |
"time_ids": self.get_time_ids_from_latents(latent_model_input, | |
requires_aesthetic_score=True), | |
}, | |
**kwargs, | |
).sample | |
else: | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input.to(self.device_torch, self.torch_dtype), | |
timestep, | |
encoder_hidden_states=text_embeddings.text_embeds, | |
added_cond_kwargs=added_cond_kwargs, | |
**kwargs, | |
).sample | |
conditional_pred = noise_pred | |
if do_classifier_free_guidance: | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
conditional_pred = noise_pred_text | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775 | |
if guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
else: | |
with torch.no_grad(): | |
if do_classifier_free_guidance: | |
# if we are doing classifier free guidance, need to double up | |
latent_model_input = torch.cat([latents] * 2, dim=0) | |
timestep = torch.cat([timestep] * 2) | |
else: | |
latent_model_input = latents | |
latent_model_input = scale_model_input(latent_model_input, timestep) | |
# check if we need to concat timesteps | |
if isinstance(timestep, torch.Tensor) and len(timestep.shape) > 1: | |
ts_bs = timestep.shape[0] | |
if ts_bs != latent_model_input.shape[0]: | |
if ts_bs == 1: | |
timestep = torch.cat([timestep] * latent_model_input.shape[0]) | |
elif ts_bs * 2 == latent_model_input.shape[0]: | |
timestep = torch.cat([timestep] * 2, dim=0) | |
else: | |
raise ValueError( | |
f"Batch size of latents {latent_model_input.shape[0]} must be the same or half the batch size of timesteps {timestep.shape[0]}") | |
# predict the noise residual | |
if self.is_pixart: | |
VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1) | |
batch_size, ch, h, w = list(latents.shape) | |
height = h * VAE_SCALE_FACTOR | |
width = w * VAE_SCALE_FACTOR | |
if self.pipeline.transformer.config.sample_size == 256: | |
aspect_ratio_bin = ASPECT_RATIO_2048_BIN | |
elif self.pipeline.transformer.config.sample_size == 128: | |
aspect_ratio_bin = ASPECT_RATIO_1024_BIN | |
elif self.pipeline.transformer.config.sample_size == 64: | |
aspect_ratio_bin = ASPECT_RATIO_512_BIN | |
elif self.pipeline.transformer.config.sample_size == 32: | |
aspect_ratio_bin = ASPECT_RATIO_256_BIN | |
else: | |
raise ValueError(f"Invalid sample size: {self.pipeline.transformer.config.sample_size}") | |
orig_height, orig_width = height, width | |
height, width = self.pipeline.image_processor.classify_height_width_bin(height, width, | |
ratios=aspect_ratio_bin) | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
if self.unet.config.sample_size == 128 or ( | |
self.vae_scale_factor == 16 and self.unet.config.sample_size == 64): | |
resolution = torch.tensor([height, width]).repeat(batch_size, 1) | |
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size, 1) | |
resolution = resolution.to(dtype=text_embeddings.text_embeds.dtype, device=self.device_torch) | |
aspect_ratio = aspect_ratio.to(dtype=text_embeddings.text_embeds.dtype, device=self.device_torch) | |
if do_classifier_free_guidance: | |
resolution = torch.cat([resolution, resolution], dim=0) | |
aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) | |
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} | |
noise_pred = self.unet( | |
latent_model_input.to(self.device_torch, self.torch_dtype), | |
encoder_hidden_states=text_embeddings.text_embeds, | |
encoder_attention_mask=text_embeddings.attention_mask, | |
timestep=timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
**kwargs | |
)[0] | |
# learned sigma | |
if self.unet.config.out_channels // 2 == self.unet.config.in_channels: | |
noise_pred = noise_pred.chunk(2, dim=1)[0] | |
else: | |
noise_pred = noise_pred | |
else: | |
if self.unet.device != self.device_torch: | |
self.unet.to(self.device_torch) | |
if self.unet.dtype != self.torch_dtype: | |
self.unet = self.unet.to(dtype=self.torch_dtype) | |
if self.is_flux: | |
with torch.no_grad(): | |
bs, c, h, w = latent_model_input.shape | |
latent_model_input_packed = rearrange( | |
latent_model_input, | |
"b c (h ph) (w pw) -> b (h w) (c ph pw)", | |
ph=2, | |
pw=2 | |
) | |
img_ids = torch.zeros(h // 2, w // 2, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs).to(self.device_torch) | |
txt_ids = torch.zeros(bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) | |
# # handle guidance | |
if self.unet.config.guidance_embeds: | |
if isinstance(guidance_scale, list): | |
guidance = torch.tensor(guidance_scale, device=self.device_torch) | |
else: | |
guidance = torch.tensor([guidance_scale], device=self.device_torch) | |
guidance = guidance.expand(latents.shape[0]) | |
else: | |
guidance = None | |
cast_dtype = self.unet.dtype | |
# with torch.amp.autocast(device_type='cuda', dtype=cast_dtype): | |
noise_pred = self.unet( | |
hidden_states=latent_model_input_packed.to(self.device_torch, cast_dtype), # [1, 4096, 64] | |
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
# todo make sure this doesnt change | |
timestep=timestep / 1000, # timestep is 1000 scale | |
encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, cast_dtype), | |
# [1, 512, 4096] | |
pooled_projections=text_embeddings.pooled_embeds.to(self.device_torch, cast_dtype), # [1, 768] | |
txt_ids=txt_ids, # [1, 512, 3] | |
img_ids=img_ids, # [1, 4096, 3] | |
guidance=guidance, | |
return_dict=False, | |
**kwargs, | |
)[0] | |
if isinstance(noise_pred, QTensor): | |
noise_pred = noise_pred.dequantize() | |
noise_pred = rearrange( | |
noise_pred, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=latent_model_input.shape[2] // 2, | |
w=latent_model_input.shape[3] // 2, | |
ph=2, | |
pw=2, | |
c=latent_model_input.shape[1], | |
) | |
elif self.is_v3: | |
noise_pred = self.unet( | |
hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype), | |
timestep=timestep, | |
encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype), | |
pooled_projections=text_embeddings.pooled_embeds.to(self.device_torch, self.torch_dtype), | |
**kwargs, | |
).sample | |
if isinstance(noise_pred, QTensor): | |
noise_pred = noise_pred.dequantize() | |
elif self.is_auraflow: | |
# aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
t = torch.tensor([timestep / 1000]).expand(latent_model_input.shape[0]) | |
t = t.to(self.device_torch, self.torch_dtype) | |
noise_pred = self.unet( | |
latent_model_input, | |
encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype), | |
timestep=t, | |
return_dict=False, | |
)[0] | |
else: | |
noise_pred = self.unet( | |
latent_model_input.to(self.device_torch, self.torch_dtype), | |
timestep=timestep, | |
encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype), | |
**kwargs, | |
).sample | |
conditional_pred = noise_pred | |
if do_classifier_free_guidance: | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2, dim=0) | |
conditional_pred = noise_pred_text | |
if detach_unconditional: | |
noise_pred_uncond = noise_pred_uncond.detach() | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
if rescale_cfg is not None and rescale_cfg != guidance_scale: | |
with torch.no_grad(): | |
# do cfg at the target rescale so we can match it | |
target_pred_mean_std = noise_pred_uncond + rescale_cfg * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
target_mean = target_pred_mean_std.mean([1, 2, 3], keepdim=True).detach() | |
target_std = target_pred_mean_std.std([1, 2, 3], keepdim=True).detach() | |
pred_mean = noise_pred.mean([1, 2, 3], keepdim=True).detach() | |
pred_std = noise_pred.std([1, 2, 3], keepdim=True).detach() | |
# match the mean and std | |
noise_pred = (noise_pred - pred_mean) / pred_std | |
noise_pred = (noise_pred * target_std) + target_mean | |
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775 | |
if guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
if return_conditional_pred: | |
return noise_pred, conditional_pred | |
return noise_pred | |
def step_scheduler(self, model_input, latent_input, timestep_tensor, noise_scheduler=None): | |
if noise_scheduler is None: | |
noise_scheduler = self.noise_scheduler | |
# // sometimes they are on the wrong device, no idea why | |
if isinstance(noise_scheduler, DDPMScheduler) or isinstance(noise_scheduler, LCMScheduler): | |
try: | |
noise_scheduler.betas = noise_scheduler.betas.to(self.device_torch) | |
noise_scheduler.alphas = noise_scheduler.alphas.to(self.device_torch) | |
noise_scheduler.alphas_cumprod = noise_scheduler.alphas_cumprod.to(self.device_torch) | |
except Exception as e: | |
pass | |
mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0) | |
latent_chunks = torch.chunk(latent_input, latent_input.shape[0], dim=0) | |
timestep_chunks = torch.chunk(timestep_tensor, timestep_tensor.shape[0], dim=0) | |
out_chunks = [] | |
if len(timestep_chunks) == 1 and len(mi_chunks) > 1: | |
# expand timestep to match | |
timestep_chunks = timestep_chunks * len(mi_chunks) | |
for idx in range(model_input.shape[0]): | |
# Reset it so it is unique for the | |
if hasattr(noise_scheduler, '_step_index'): | |
noise_scheduler._step_index = None | |
if hasattr(noise_scheduler, 'is_scale_input_called'): | |
noise_scheduler.is_scale_input_called = True | |
out_chunks.append( | |
noise_scheduler.step(mi_chunks[idx], timestep_chunks[idx], latent_chunks[idx], return_dict=False)[ | |
0] | |
) | |
return torch.cat(out_chunks, dim=0) | |
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746 | |
def diffuse_some_steps( | |
self, | |
latents: torch.FloatTensor, | |
text_embeddings: PromptEmbeds, | |
total_timesteps: int = 1000, | |
start_timesteps=0, | |
guidance_scale=1, | |
add_time_ids=None, | |
bleed_ratio: float = 0.5, | |
bleed_latents: torch.FloatTensor = None, | |
is_input_scaled=False, | |
return_first_prediction=False, | |
**kwargs, | |
): | |
timesteps_to_run = self.noise_scheduler.timesteps[start_timesteps:total_timesteps] | |
first_prediction = None | |
for timestep in tqdm(timesteps_to_run, leave=False): | |
timestep = timestep.unsqueeze_(0) | |
noise_pred, conditional_pred = self.predict_noise( | |
latents, | |
text_embeddings, | |
timestep, | |
guidance_scale=guidance_scale, | |
add_time_ids=add_time_ids, | |
is_input_scaled=is_input_scaled, | |
return_conditional_pred=True, | |
**kwargs, | |
) | |
# some schedulers need to run separately, so do that. (euler for example) | |
if return_first_prediction and first_prediction is None: | |
first_prediction = conditional_pred | |
latents = self.step_scheduler(noise_pred, latents, timestep) | |
# if not last step, and bleeding, bleed in some latents | |
if bleed_latents is not None and timestep != self.noise_scheduler.timesteps[-1]: | |
latents = (latents * (1 - bleed_ratio)) + (bleed_latents * bleed_ratio) | |
# only skip first scaling | |
is_input_scaled = False | |
# return latents_steps | |
if return_first_prediction: | |
return latents, first_prediction | |
return latents | |
def encode_prompt( | |
self, | |
prompt, | |
prompt2=None, | |
num_images_per_prompt=1, | |
force_all=False, | |
long_prompts=False, | |
max_length=None, | |
dropout_prob=0.0, | |
) -> PromptEmbeds: | |
# sd1.5 embeddings are (bs, 77, 768) | |
prompt = prompt | |
# if it is not a list, make it one | |
if not isinstance(prompt, list): | |
prompt = [prompt] | |
if prompt2 is not None and not isinstance(prompt2, list): | |
prompt2 = [prompt2] | |
if self.is_xl: | |
# todo make this a config | |
# 50% chance to use an encoder anyway even if it is disabled | |
# allows the other TE to compensate for the disabled one | |
# use_encoder_1 = self.use_text_encoder_1 or force_all or random.random() > 0.5 | |
# use_encoder_2 = self.use_text_encoder_2 or force_all or random.random() > 0.5 | |
use_encoder_1 = True | |
use_encoder_2 = True | |
return PromptEmbeds( | |
train_tools.encode_prompts_xl( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
prompt2, | |
num_images_per_prompt=num_images_per_prompt, | |
use_text_encoder_1=use_encoder_1, | |
use_text_encoder_2=use_encoder_2, | |
truncate=not long_prompts, | |
max_length=max_length, | |
dropout_prob=dropout_prob, | |
) | |
) | |
if self.is_v3: | |
return PromptEmbeds( | |
train_tools.encode_prompts_sd3( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
truncate=not long_prompts, | |
max_length=max_length, | |
dropout_prob=dropout_prob, | |
pipeline=self.pipeline, | |
) | |
) | |
elif self.is_pixart: | |
embeds, attention_mask = train_tools.encode_prompts_pixart( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
truncate=not long_prompts, | |
max_length=300 if self.model_config.is_pixart_sigma else 120, | |
dropout_prob=dropout_prob | |
) | |
return PromptEmbeds( | |
embeds, | |
attention_mask=attention_mask, | |
) | |
elif self.is_auraflow: | |
embeds, attention_mask = train_tools.encode_prompts_auraflow( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
truncate=not long_prompts, | |
max_length=256, | |
dropout_prob=dropout_prob | |
) | |
return PromptEmbeds( | |
embeds, | |
attention_mask=attention_mask, # not used | |
) | |
elif self.is_flux: | |
prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux( | |
self.tokenizer, # list | |
self.text_encoder, # list | |
prompt, | |
truncate=not long_prompts, | |
max_length=512, | |
dropout_prob=dropout_prob, | |
attn_mask=self.model_config.attn_masking | |
) | |
pe = PromptEmbeds( | |
prompt_embeds | |
) | |
pe.pooled_embeds = pooled_prompt_embeds | |
return pe | |
elif isinstance(self.text_encoder, T5EncoderModel): | |
embeds, attention_mask = train_tools.encode_prompts_pixart( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
truncate=not long_prompts, | |
max_length=256, | |
dropout_prob=dropout_prob | |
) | |
# just mask the attention mask | |
prompt_attention_mask = attention_mask.unsqueeze(-1).expand(embeds.shape) | |
embeds = embeds * prompt_attention_mask.to(dtype=embeds.dtype, device=embeds.device) | |
return PromptEmbeds( | |
embeds, | |
# do we want attn mask here? | |
# attention_mask=attention_mask, | |
) | |
else: | |
return PromptEmbeds( | |
train_tools.encode_prompts( | |
self.tokenizer, | |
self.text_encoder, | |
prompt, | |
truncate=not long_prompts, | |
max_length=max_length, | |
dropout_prob=dropout_prob | |
) | |
) | |
def encode_images( | |
self, | |
image_list: List[torch.Tensor], | |
device=None, | |
dtype=None | |
): | |
if device is None: | |
device = self.vae_device_torch | |
if dtype is None: | |
dtype = self.vae_torch_dtype | |
latent_list = [] | |
# Move to vae to device if on cpu | |
if self.vae.device == 'cpu': | |
self.vae.to(device) | |
self.vae.eval() | |
self.vae.requires_grad_(False) | |
# move to device and dtype | |
image_list = [image.to(device, dtype=dtype) for image in image_list] | |
VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1) | |
# resize images if not divisible by 8 | |
for i in range(len(image_list)): | |
image = image_list[i] | |
if image.shape[1] % VAE_SCALE_FACTOR != 0 or image.shape[2] % VAE_SCALE_FACTOR != 0: | |
image_list[i] = Resize((image.shape[1] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR, | |
image.shape[2] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR))(image) | |
images = torch.stack(image_list) | |
if isinstance(self.vae, AutoencoderTiny): | |
latents = self.vae.encode(images, return_dict=False)[0] | |
else: | |
latents = self.vae.encode(images).latent_dist.sample() | |
shift = self.vae.config['shift_factor'] if self.vae.config['shift_factor'] is not None else 0 | |
# flux ref https://github.com/black-forest-labs/flux/blob/c23ae247225daba30fbd56058d247cc1b1fc20a3/src/flux/modules/autoencoder.py#L303 | |
# z = self.scale_factor * (z - self.shift_factor) | |
latents = self.vae.config['scaling_factor'] * (latents - shift) | |
latents = latents.to(device, dtype=dtype) | |
return latents | |
def decode_latents( | |
self, | |
latents: torch.Tensor, | |
device=None, | |
dtype=None | |
): | |
if device is None: | |
device = self.device | |
if dtype is None: | |
dtype = self.torch_dtype | |
# Move to vae to device if on cpu | |
if self.vae.device == 'cpu': | |
self.vae.to(self.device) | |
latents = latents.to(device, dtype=dtype) | |
latents = (latents / self.vae.config['scaling_factor']) + self.vae.config['shift_factor'] | |
images = self.vae.decode(latents).sample | |
images = images.to(device, dtype=dtype) | |
return images | |
def encode_image_prompt_pairs( | |
self, | |
prompt_list: List[str], | |
image_list: List[torch.Tensor], | |
device=None, | |
dtype=None | |
): | |
# todo check image types and expand and rescale as needed | |
# device and dtype are for outputs | |
if device is None: | |
device = self.device | |
if dtype is None: | |
dtype = self.torch_dtype | |
embedding_list = [] | |
latent_list = [] | |
# embed the prompts | |
for prompt in prompt_list: | |
embedding = self.encode_prompt(prompt).to(self.device_torch, dtype=dtype) | |
embedding_list.append(embedding) | |
return embedding_list, latent_list | |
def get_weight_by_name(self, name): | |
# weights begin with te{te_num}_ for text encoder | |
# weights begin with unet_ for unet_ | |
if name.startswith('te'): | |
key = name[4:] | |
# text encoder | |
te_num = int(name[2]) | |
if isinstance(self.text_encoder, list): | |
return self.text_encoder[te_num].state_dict()[key] | |
else: | |
return self.text_encoder.state_dict()[key] | |
elif name.startswith('unet'): | |
key = name[5:] | |
# unet | |
return self.unet.state_dict()[key] | |
raise ValueError(f"Unknown weight name: {name}") | |
def inject_trigger_into_prompt(self, prompt, trigger=None, to_replace_list=None, add_if_not_present=False): | |
return inject_trigger_into_prompt( | |
prompt, | |
trigger=trigger, | |
to_replace_list=to_replace_list, | |
add_if_not_present=add_if_not_present, | |
) | |
def state_dict(self, vae=True, text_encoder=True, unet=True): | |
state_dict = OrderedDict() | |
if vae: | |
for k, v in self.vae.state_dict().items(): | |
new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}" | |
state_dict[new_key] = v | |
if text_encoder: | |
if isinstance(self.text_encoder, list): | |
for i, encoder in enumerate(self.text_encoder): | |
for k, v in encoder.state_dict().items(): | |
new_key = k if k.startswith( | |
f"{SD_PREFIX_TEXT_ENCODER}{i}_") else f"{SD_PREFIX_TEXT_ENCODER}{i}_{k}" | |
state_dict[new_key] = v | |
else: | |
for k, v in self.text_encoder.state_dict().items(): | |
new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER}_") else f"{SD_PREFIX_TEXT_ENCODER}_{k}" | |
state_dict[new_key] = v | |
if unet: | |
for k, v in self.unet.state_dict().items(): | |
new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}" | |
state_dict[new_key] = v | |
return state_dict | |
def named_parameters(self, vae=True, text_encoder=True, unet=True, refiner=False, state_dict_keys=False) -> \ | |
OrderedDict[ | |
str, Parameter]: | |
named_params: OrderedDict[str, Parameter] = OrderedDict() | |
if vae: | |
for name, param in self.vae.named_parameters(recurse=True, prefix=f"{SD_PREFIX_VAE}"): | |
named_params[name] = param | |
if text_encoder: | |
if isinstance(self.text_encoder, list): | |
for i, encoder in enumerate(self.text_encoder): | |
if self.is_xl and not self.model_config.use_text_encoder_1 and i == 0: | |
# dont add these params | |
continue | |
if self.is_xl and not self.model_config.use_text_encoder_2 and i == 1: | |
# dont add these params | |
continue | |
for name, param in encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}{i}"): | |
named_params[name] = param | |
else: | |
for name, param in self.text_encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}"): | |
named_params[name] = param | |
if unet: | |
if self.is_flux: | |
# Just train the middle 2 blocks of each transformer block | |
# block_list = [] | |
# num_transformer_blocks = 2 | |
# start_block = len(self.unet.transformer_blocks) // 2 - (num_transformer_blocks // 2) | |
# for i in range(num_transformer_blocks): | |
# block_list.append(self.unet.transformer_blocks[start_block + i]) | |
# | |
# num_single_transformer_blocks = 4 | |
# start_block = len(self.unet.single_transformer_blocks) // 2 - (num_single_transformer_blocks // 2) | |
# for i in range(num_single_transformer_blocks): | |
# block_list.append(self.unet.single_transformer_blocks[start_block + i]) | |
# | |
# for block in block_list: | |
# for name, param in block.named_parameters(recurse=True, prefix=f"{SD_PREFIX_UNET}"): | |
# named_params[name] = param | |
# train the guidance embedding | |
# if self.unet.config.guidance_embeds: | |
# transformer: FluxTransformer2DModel = self.unet | |
# for name, param in transformer.time_text_embed.named_parameters(recurse=True, | |
# prefix=f"{SD_PREFIX_UNET}"): | |
# named_params[name] = param | |
for name, param in self.unet.transformer_blocks.named_parameters(recurse=True, | |
prefix=f"{SD_PREFIX_UNET}"): | |
named_params[name] = param | |
for name, param in self.unet.single_transformer_blocks.named_parameters(recurse=True, | |
prefix=f"{SD_PREFIX_UNET}"): | |
named_params[name] = param | |
else: | |
for name, param in self.unet.named_parameters(recurse=True, prefix=f"{SD_PREFIX_UNET}"): | |
named_params[name] = param | |
if refiner: | |
for name, param in self.refiner_unet.named_parameters(recurse=True, prefix=f"{SD_PREFIX_REFINER_UNET}"): | |
named_params[name] = param | |
# convert to state dict keys, jsut replace . with _ on keys | |
if state_dict_keys: | |
new_named_params = OrderedDict() | |
for k, v in named_params.items(): | |
# replace only the first . with an _ | |
new_key = k.replace('.', '_', 1) | |
new_named_params[new_key] = v | |
named_params = new_named_params | |
return named_params | |
def save_refiner(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16')): | |
# load the full refiner since we only train unet | |
if self.model_config.refiner_name_or_path is None: | |
raise ValueError("Refiner must be specified to save it") | |
refiner_config_path = os.path.join(ORIG_CONFIGS_ROOT, 'sd_xl_refiner.yaml') | |
# load the refiner model | |
dtype = get_torch_dtype(self.dtype) | |
model_path = self.model_config._original_refiner_name_or_path | |
if not os.path.exists(model_path) or os.path.isdir(model_path): | |
# TODO only load unet?? | |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
model_path, | |
dtype=dtype, | |
device='cpu', | |
# variant="fp16", | |
use_safetensors=True, | |
) | |
else: | |
refiner = StableDiffusionXLImg2ImgPipeline.from_single_file( | |
model_path, | |
dtype=dtype, | |
device='cpu', | |
torch_dtype=self.torch_dtype, | |
original_config_file=refiner_config_path, | |
) | |
# replace original unet | |
refiner.unet = self.refiner_unet | |
flush() | |
diffusers_state_dict = OrderedDict() | |
for k, v in refiner.vae.state_dict().items(): | |
new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}" | |
diffusers_state_dict[new_key] = v | |
for k, v in refiner.text_encoder_2.state_dict().items(): | |
new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER2}_") else f"{SD_PREFIX_TEXT_ENCODER2}_{k}" | |
diffusers_state_dict[new_key] = v | |
for k, v in refiner.unet.state_dict().items(): | |
new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}" | |
diffusers_state_dict[new_key] = v | |
converted_state_dict = get_ldm_state_dict_from_diffusers( | |
diffusers_state_dict, | |
'sdxl_refiner', | |
device='cpu', | |
dtype=save_dtype | |
) | |
# make sure parent folder exists | |
os.makedirs(os.path.dirname(output_file), exist_ok=True) | |
save_file(converted_state_dict, output_file, metadata=meta) | |
if self.config_file is not None: | |
output_path_no_ext = os.path.splitext(output_file)[0] | |
output_config_path = f"{output_path_no_ext}.yaml" | |
shutil.copyfile(self.config_file, output_config_path) | |
def save(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16'), logit_scale=None): | |
version_string = '1' | |
if self.is_v2: | |
version_string = '2' | |
if self.is_xl: | |
version_string = 'sdxl' | |
if self.is_ssd: | |
# overwrite sdxl because both wil be true here | |
version_string = 'ssd' | |
if self.is_ssd and self.is_vega: | |
version_string = 'vega' | |
# if output file does not end in .safetensors, then it is a directory and we are | |
# saving in diffusers format | |
if not output_file.endswith('.safetensors'): | |
# diffusers | |
# if self.is_pixart: | |
# self.unet.save_pretrained( | |
# save_directory=output_file, | |
# safe_serialization=True, | |
# ) | |
# else: | |
if self.is_flux: | |
# only save the unet | |
transformer: FluxTransformer2DModel = self.unet | |
transformer.save_pretrained( | |
save_directory=os.path.join(output_file, 'transformer'), | |
safe_serialization=True, | |
) | |
else: | |
self.pipeline.save_pretrained( | |
save_directory=output_file, | |
safe_serialization=True, | |
) | |
# save out meta config | |
meta_path = os.path.join(output_file, 'aitk_meta.yaml') | |
with open(meta_path, 'w') as f: | |
yaml.dump(meta, f) | |
else: | |
save_ldm_model_from_diffusers( | |
sd=self, | |
output_file=output_file, | |
meta=meta, | |
save_dtype=save_dtype, | |
sd_version=version_string, | |
) | |
if self.config_file is not None: | |
output_path_no_ext = os.path.splitext(output_file)[0] | |
output_config_path = f"{output_path_no_ext}.yaml" | |
shutil.copyfile(self.config_file, output_config_path) | |
def prepare_optimizer_params( | |
self, | |
unet=False, | |
text_encoder=False, | |
text_encoder_lr=None, | |
unet_lr=None, | |
refiner_lr=None, | |
refiner=False, | |
default_lr=1e-6, | |
): | |
# todo maybe only get locon ones? | |
# not all items are saved, to make it match, we need to match out save mappings | |
# and not train anything not mapped. Also add learning rate | |
version = 'sd1' | |
if self.is_xl: | |
version = 'sdxl' | |
if self.is_v2: | |
version = 'sd2' | |
mapping_filename = f"stable_diffusion_{version}.json" | |
mapping_path = os.path.join(KEYMAPS_ROOT, mapping_filename) | |
with open(mapping_path, 'r') as f: | |
mapping = json.load(f) | |
ldm_diffusers_keymap = mapping['ldm_diffusers_keymap'] | |
trainable_parameters = [] | |
# we use state dict to find params | |
if unet: | |
named_params = self.named_parameters(vae=False, unet=unet, text_encoder=False, state_dict_keys=True) | |
unet_lr = unet_lr if unet_lr is not None else default_lr | |
params = [] | |
if self.is_pixart or self.is_auraflow or self.is_flux: | |
for param in named_params.values(): | |
if param.requires_grad: | |
params.append(param) | |
else: | |
for key, diffusers_key in ldm_diffusers_keymap.items(): | |
if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS: | |
if named_params[diffusers_key].requires_grad: | |
params.append(named_params[diffusers_key]) | |
param_data = {"params": params, "lr": unet_lr} | |
trainable_parameters.append(param_data) | |
print(f"Found {len(params)} trainable parameter in unet") | |
if text_encoder: | |
named_params = self.named_parameters(vae=False, unet=False, text_encoder=text_encoder, state_dict_keys=True) | |
text_encoder_lr = text_encoder_lr if text_encoder_lr is not None else default_lr | |
params = [] | |
for key, diffusers_key in ldm_diffusers_keymap.items(): | |
if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS: | |
if named_params[diffusers_key].requires_grad: | |
params.append(named_params[diffusers_key]) | |
param_data = {"params": params, "lr": text_encoder_lr} | |
trainable_parameters.append(param_data) | |
print(f"Found {len(params)} trainable parameter in text encoder") | |
if refiner: | |
named_params = self.named_parameters(vae=False, unet=False, text_encoder=False, refiner=True, | |
state_dict_keys=True) | |
refiner_lr = refiner_lr if refiner_lr is not None else default_lr | |
params = [] | |
for key, diffusers_key in ldm_diffusers_keymap.items(): | |
diffusers_key = f"refiner_{diffusers_key}" | |
if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS: | |
if named_params[diffusers_key].requires_grad: | |
params.append(named_params[diffusers_key]) | |
param_data = {"params": params, "lr": refiner_lr} | |
trainable_parameters.append(param_data) | |
print(f"Found {len(params)} trainable parameter in refiner") | |
return trainable_parameters | |
def save_device_state(self): | |
# saves the current device state for all modules | |
# this is useful for when we want to alter the state and restore it | |
if self.is_pixart or self.is_v3 or self.is_auraflow or self.is_flux: | |
unet_has_grad = self.unet.proj_out.weight.requires_grad | |
else: | |
unet_has_grad = self.unet.conv_in.weight.requires_grad | |
self.device_state = { | |
**empty_preset, | |
'vae': { | |
'training': self.vae.training, | |
'device': self.vae.device, | |
}, | |
'unet': { | |
'training': self.unet.training, | |
'device': self.unet.device, | |
'requires_grad': unet_has_grad, | |
}, | |
} | |
if isinstance(self.text_encoder, list): | |
self.device_state['text_encoder']: List[dict] = [] | |
for encoder in self.text_encoder: | |
try: | |
te_has_grad = encoder.text_model.final_layer_norm.weight.requires_grad | |
except: | |
te_has_grad = encoder.encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
self.device_state['text_encoder'].append({ | |
'training': encoder.training, | |
'device': encoder.device, | |
# todo there has to be a better way to do this | |
'requires_grad': te_has_grad | |
}) | |
else: | |
if isinstance(self.text_encoder, T5EncoderModel) or isinstance(self.text_encoder, UMT5EncoderModel): | |
te_has_grad = self.text_encoder.encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
else: | |
te_has_grad = self.text_encoder.text_model.final_layer_norm.weight.requires_grad | |
self.device_state['text_encoder'] = { | |
'training': self.text_encoder.training, | |
'device': self.text_encoder.device, | |
'requires_grad': te_has_grad | |
} | |
if self.adapter is not None: | |
if isinstance(self.adapter, IPAdapter): | |
requires_grad = self.adapter.image_proj_model.training | |
adapter_device = self.unet.device | |
elif isinstance(self.adapter, T2IAdapter): | |
requires_grad = self.adapter.adapter.conv_in.weight.requires_grad | |
adapter_device = self.adapter.device | |
elif isinstance(self.adapter, ControlNetModel): | |
requires_grad = self.adapter.conv_in.training | |
adapter_device = self.adapter.device | |
elif isinstance(self.adapter, ClipVisionAdapter): | |
requires_grad = self.adapter.embedder.training | |
adapter_device = self.adapter.device | |
elif isinstance(self.adapter, CustomAdapter): | |
requires_grad = self.adapter.training | |
adapter_device = self.adapter.device | |
elif isinstance(self.adapter, ReferenceAdapter): | |
# todo update this!! | |
requires_grad = True | |
adapter_device = self.adapter.device | |
else: | |
raise ValueError(f"Unknown adapter type: {type(self.adapter)}") | |
self.device_state['adapter'] = { | |
'training': self.adapter.training, | |
'device': adapter_device, | |
'requires_grad': requires_grad, | |
} | |
if self.refiner_unet is not None: | |
self.device_state['refiner_unet'] = { | |
'training': self.refiner_unet.training, | |
'device': self.refiner_unet.device, | |
'requires_grad': self.refiner_unet.conv_in.weight.requires_grad, | |
} | |
def restore_device_state(self): | |
# restores the device state for all modules | |
# this is useful for when we want to alter the state and restore it | |
if self.device_state is None: | |
return | |
self.set_device_state(self.device_state) | |
self.device_state = None | |
def set_device_state(self, state): | |
if state['vae']['training']: | |
self.vae.train() | |
else: | |
self.vae.eval() | |
self.vae.to(state['vae']['device']) | |
if state['unet']['training']: | |
self.unet.train() | |
else: | |
self.unet.eval() | |
self.unet.to(state['unet']['device']) | |
if state['unet']['requires_grad']: | |
self.unet.requires_grad_(True) | |
else: | |
self.unet.requires_grad_(False) | |
if isinstance(self.text_encoder, list): | |
for i, encoder in enumerate(self.text_encoder): | |
if isinstance(state['text_encoder'], list): | |
if state['text_encoder'][i]['training']: | |
encoder.train() | |
else: | |
encoder.eval() | |
encoder.to(state['text_encoder'][i]['device']) | |
encoder.requires_grad_(state['text_encoder'][i]['requires_grad']) | |
else: | |
if state['text_encoder']['training']: | |
encoder.train() | |
else: | |
encoder.eval() | |
encoder.to(state['text_encoder']['device']) | |
encoder.requires_grad_(state['text_encoder']['requires_grad']) | |
else: | |
if state['text_encoder']['training']: | |
self.text_encoder.train() | |
else: | |
self.text_encoder.eval() | |
self.text_encoder.to(state['text_encoder']['device']) | |
self.text_encoder.requires_grad_(state['text_encoder']['requires_grad']) | |
if self.adapter is not None: | |
self.adapter.to(state['adapter']['device']) | |
self.adapter.requires_grad_(state['adapter']['requires_grad']) | |
if state['adapter']['training']: | |
self.adapter.train() | |
else: | |
self.adapter.eval() | |
if self.refiner_unet is not None: | |
self.refiner_unet.to(state['refiner_unet']['device']) | |
self.refiner_unet.requires_grad_(state['refiner_unet']['requires_grad']) | |
if state['refiner_unet']['training']: | |
self.refiner_unet.train() | |
else: | |
self.refiner_unet.eval() | |
flush() | |
def set_device_state_preset(self, device_state_preset: DeviceStatePreset): | |
# sets a preset for device state | |
# save current state first | |
self.save_device_state() | |
active_modules = [] | |
training_modules = [] | |
if device_state_preset in ['cache_latents']: | |
active_modules = ['vae'] | |
if device_state_preset in ['cache_clip']: | |
active_modules = ['clip'] | |
if device_state_preset in ['generate']: | |
active_modules = ['vae', 'unet', 'text_encoder', 'adapter', 'refiner_unet'] | |
state = copy.deepcopy(empty_preset) | |
# vae | |
state['vae'] = { | |
'training': 'vae' in training_modules, | |
'device': self.vae_device_torch if 'vae' in active_modules else 'cpu', | |
'requires_grad': 'vae' in training_modules, | |
} | |
# unet | |
state['unet'] = { | |
'training': 'unet' in training_modules, | |
'device': self.device_torch if 'unet' in active_modules else 'cpu', | |
'requires_grad': 'unet' in training_modules, | |
} | |
if self.refiner_unet is not None: | |
state['refiner_unet'] = { | |
'training': 'refiner_unet' in training_modules, | |
'device': self.device_torch if 'refiner_unet' in active_modules else 'cpu', | |
'requires_grad': 'refiner_unet' in training_modules, | |
} | |
# text encoder | |
if isinstance(self.text_encoder, list): | |
state['text_encoder'] = [] | |
for i, encoder in enumerate(self.text_encoder): | |
state['text_encoder'].append({ | |
'training': 'text_encoder' in training_modules, | |
'device': self.te_device_torch if 'text_encoder' in active_modules else 'cpu', | |
'requires_grad': 'text_encoder' in training_modules, | |
}) | |
else: | |
state['text_encoder'] = { | |
'training': 'text_encoder' in training_modules, | |
'device': self.te_device_torch if 'text_encoder' in active_modules else 'cpu', | |
'requires_grad': 'text_encoder' in training_modules, | |
} | |
if self.adapter is not None: | |
state['adapter'] = { | |
'training': 'adapter' in training_modules, | |
'device': self.device_torch if 'adapter' in active_modules else 'cpu', | |
'requires_grad': 'adapter' in training_modules, | |
} | |
self.set_device_state(state) | |
def text_encoder_to(self, *args, **kwargs): | |
if isinstance(self.text_encoder, list): | |
for encoder in self.text_encoder: | |
encoder.to(*args, **kwargs) | |
else: | |
self.text_encoder.to(*args, **kwargs) | |