File size: 127,150 Bytes
3880b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
import copy
import gc
import json
import random
import shutil
import typing
from typing import Union, List, Literal, Iterator
import sys
import os
from collections import OrderedDict
import copy
import yaml
from PIL import Image
from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_1024_BIN, ASPECT_RATIO_512_BIN, \
    ASPECT_RATIO_2048_BIN, ASPECT_RATIO_256_BIN
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
from safetensors.torch import save_file, load_file
from torch import autocast
from torch.nn import Parameter
from torch.utils.checkpoint import checkpoint
from tqdm import tqdm
from torchvision.transforms import Resize, transforms

from toolkit.assistant_lora import load_assistant_lora_from_path
from toolkit.clip_vision_adapter import ClipVisionAdapter
from toolkit.custom_adapter import CustomAdapter
from toolkit.ip_adapter import IPAdapter
from library.model_util import convert_unet_state_dict_to_sd, convert_text_encoder_state_dict_to_sd_v2, \
    convert_vae_state_dict, load_vae
from toolkit import train_tools
from toolkit.config_modules import ModelConfig, GenerateImageConfig
from toolkit.metadata import get_meta_for_safetensors
from toolkit.paths import REPOS_ROOT, KEYMAPS_ROOT
from toolkit.prompt_utils import inject_trigger_into_prompt, PromptEmbeds, concat_prompt_embeds
from toolkit.reference_adapter import ReferenceAdapter
from toolkit.sampler import get_sampler
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.saving import save_ldm_model_from_diffusers, get_ldm_state_dict_from_diffusers
from toolkit.sd_device_states_presets import empty_preset
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
from einops import rearrange, repeat
import torch
from toolkit.pipelines import CustomStableDiffusionXLPipeline, CustomStableDiffusionPipeline, \
    StableDiffusionKDiffusionXLPipeline, StableDiffusionXLRefinerPipeline, FluxWithCFGPipeline
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, T2IAdapter, DDPMScheduler, \
    StableDiffusionXLAdapterPipeline, StableDiffusionAdapterPipeline, DiffusionPipeline, PixArtTransformer2DModel, \
    StableDiffusionXLImg2ImgPipeline, LCMScheduler, Transformer2DModel, AutoencoderTiny, ControlNetModel, \
    StableDiffusionXLControlNetPipeline, StableDiffusionControlNetPipeline, StableDiffusion3Pipeline, \
    StableDiffusion3Img2ImgPipeline, PixArtSigmaPipeline, AuraFlowPipeline, AuraFlowTransformer2DModel, FluxPipeline, \
    FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel
import diffusers
from diffusers import \
    AutoencoderKL, \
    UNet2DConditionModel
from diffusers import PixArtAlphaPipeline, DPMSolverMultistepScheduler, PixArtSigmaPipeline
from transformers import T5EncoderModel, BitsAndBytesConfig, UMT5EncoderModel, T5TokenizerFast
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection

from toolkit.paths import ORIG_CONFIGS_ROOT, DIFFUSERS_CONFIGS_ROOT
from huggingface_hub import hf_hub_download

from optimum.quanto import freeze, qfloat8, quantize, QTensor, qint4
from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from toolkit.lora_special import LoRASpecialNetwork

# tell it to shut up
diffusers.logging.set_verbosity(diffusers.logging.ERROR)

SD_PREFIX_VAE = "vae"
SD_PREFIX_UNET = "unet"
SD_PREFIX_REFINER_UNET = "refiner_unet"
SD_PREFIX_TEXT_ENCODER = "te"

SD_PREFIX_TEXT_ENCODER1 = "te0"
SD_PREFIX_TEXT_ENCODER2 = "te1"

# prefixed diffusers keys
DO_NOT_TRAIN_WEIGHTS = [
    "unet_time_embedding.linear_1.bias",
    "unet_time_embedding.linear_1.weight",
    "unet_time_embedding.linear_2.bias",
    "unet_time_embedding.linear_2.weight",
    "refiner_unet_time_embedding.linear_1.bias",
    "refiner_unet_time_embedding.linear_1.weight",
    "refiner_unet_time_embedding.linear_2.bias",
    "refiner_unet_time_embedding.linear_2.weight",
]

DeviceStatePreset = Literal['cache_latents', 'generate']


class BlankNetwork:

    def __init__(self):
        self.multiplier = 1.0
        self.is_active = True
        self.is_merged_in = False
        self.can_merge_in = False

    def __enter__(self):
        self.is_active = True

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.is_active = False


def flush():
    torch.cuda.empty_cache()
    gc.collect()


UNET_IN_CHANNELS = 4  # Stable Diffusion の in_channels は 4 で固定。XLも同じ。
# VAE_SCALE_FACTOR = 8  # 2 ** (len(vae.config.block_out_channels) - 1) = 8



class StableDiffusion:

    def __init__(
            self,
            device,
            model_config: ModelConfig,
            dtype='fp16',
            custom_pipeline=None,
            noise_scheduler=None,
            quantize_device=None,
    ):
        self.custom_pipeline = custom_pipeline
        self.device = device
        self.dtype = dtype
        self.torch_dtype = get_torch_dtype(dtype)
        self.device_torch = torch.device(self.device)

        self.vae_device_torch = torch.device(self.device) if model_config.vae_device is None else torch.device(
            model_config.vae_device)
        self.vae_torch_dtype = get_torch_dtype(model_config.vae_dtype)

        self.te_device_torch = torch.device(self.device) if model_config.te_device is None else torch.device(
            model_config.te_device)
        self.te_torch_dtype = get_torch_dtype(model_config.te_dtype)

        self.model_config = model_config
        self.prediction_type = "v_prediction" if self.model_config.is_v_pred else "epsilon"

        self.device_state = None

        self.pipeline: Union[None, 'StableDiffusionPipeline', 'CustomStableDiffusionXLPipeline', 'PixArtAlphaPipeline']
        self.vae: Union[None, 'AutoencoderKL']
        self.unet: Union[None, 'UNet2DConditionModel']
        self.text_encoder: Union[None, 'CLIPTextModel', List[Union['CLIPTextModel', 'CLIPTextModelWithProjection']]]
        self.tokenizer: Union[None, 'CLIPTokenizer', List['CLIPTokenizer']]
        self.noise_scheduler: Union[None, 'DDPMScheduler'] = noise_scheduler

        self.refiner_unet: Union[None, 'UNet2DConditionModel'] = None
        self.assistant_lora: Union[None, 'LoRASpecialNetwork'] = None

        # sdxl stuff
        self.logit_scale = None
        self.ckppt_info = None
        self.is_loaded = False

        # to hold network if there is one
        self.network = None
        self.adapter: Union['ControlNetModel', 'T2IAdapter', 'IPAdapter', 'ReferenceAdapter', None] = None
        self.is_xl = model_config.is_xl
        self.is_v2 = model_config.is_v2
        self.is_ssd = model_config.is_ssd
        self.is_v3 = model_config.is_v3
        self.is_vega = model_config.is_vega
        self.is_pixart = model_config.is_pixart
        self.is_auraflow = model_config.is_auraflow
        self.is_flux = model_config.is_flux

        self.use_text_encoder_1 = model_config.use_text_encoder_1
        self.use_text_encoder_2 = model_config.use_text_encoder_2

        self.config_file = None

        self.is_flow_matching = False
        if self.is_flux or self.is_v3 or self.is_auraflow or isinstance(self.noise_scheduler, CustomFlowMatchEulerDiscreteScheduler):
            self.is_flow_matching = True

        self.quantize_device = quantize_device if quantize_device is not None else self.device
        self.low_vram = self.model_config.low_vram

        # merge in and preview active with -1 weight
        self.invert_assistant_lora = False

    def load_model(self):
        if self.is_loaded:
            return
        dtype = get_torch_dtype(self.dtype)

        # move the betas alphas and  alphas_cumprod to device. Sometimed they get stuck on cpu, not sure why
        # self.noise_scheduler.betas = self.noise_scheduler.betas.to(self.device_torch)
        # self.noise_scheduler.alphas = self.noise_scheduler.alphas.to(self.device_torch)
        # self.noise_scheduler.alphas_cumprod = self.noise_scheduler.alphas_cumprod.to(self.device_torch)

        model_path = self.model_config.name_or_path
        if 'civitai.com' in self.model_config.name_or_path:
            # load is a civit ai model, use the loader.
            from toolkit.civitai import get_model_path_from_url
            model_path = get_model_path_from_url(self.model_config.name_or_path)

        load_args = {}
        if self.noise_scheduler:
            load_args['scheduler'] = self.noise_scheduler

        if self.model_config.vae_path is not None:
            load_args['vae'] = load_vae(self.model_config.vae_path, dtype)
        if self.model_config.is_xl or self.model_config.is_ssd or self.model_config.is_vega:
            if self.custom_pipeline is not None:
                pipln = self.custom_pipeline
            else:
                pipln = StableDiffusionXLPipeline
                # pipln = StableDiffusionKDiffusionXLPipeline

            # see if path exists
            if not os.path.exists(model_path) or os.path.isdir(model_path):
                # try to load with default diffusers
                pipe = pipln.from_pretrained(
                    model_path,
                    dtype=dtype,
                    device=self.device_torch,
                    # variant="fp16",
                    use_safetensors=True,
                    **load_args
                )
            else:
                pipe = pipln.from_single_file(
                    model_path,
                    device=self.device_torch,
                    torch_dtype=self.torch_dtype,
                )

            if 'vae' in load_args and load_args['vae'] is not None:
                pipe.vae = load_args['vae']
            flush()

            text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
            tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
            for text_encoder in text_encoders:
                text_encoder.to(self.te_device_torch, dtype=self.te_torch_dtype)
                text_encoder.requires_grad_(False)
                text_encoder.eval()
            text_encoder = text_encoders

            pipe.vae = pipe.vae.to(self.vae_device_torch, dtype=self.vae_torch_dtype)

            if self.model_config.experimental_xl:
                print("Experimental XL mode enabled")
                print("Loading and injecting alt weights")
                # load the mismatched weight and force it in
                raw_state_dict = load_file(model_path)
                replacement_weight = raw_state_dict['conditioner.embedders.1.model.text_projection'].clone()
                del raw_state_dict
                #  get state dict for  for 2nd text encoder
                te1_state_dict = text_encoders[1].state_dict()
                # replace weight with mismatched weight
                te1_state_dict['text_projection.weight'] = replacement_weight.to(self.device_torch, dtype=dtype)
                flush()
                print("Injecting alt weights")
        elif self.model_config.is_v3:
            if self.custom_pipeline is not None:
                pipln = self.custom_pipeline
            else:
                pipln = StableDiffusion3Pipeline
            
            print("Loading SD3 model")
            # assume it is the large model
            base_model_path = "stabilityai/stable-diffusion-3.5-large"
            print("Loading transformer")
            subfolder = 'transformer'
            transformer_path = model_path
            # check if HF_DATASETS_OFFLINE or TRANSFORMERS_OFFLINE is set
            if os.path.exists(transformer_path):
                subfolder = None
                transformer_path = os.path.join(transformer_path, 'transformer')
                # check if the path is a full checkpoint.
                te_folder_path = os.path.join(model_path, 'text_encoder')
                # if we have the te, this folder is a full checkpoint, use it as the base
                if os.path.exists(te_folder_path):
                    base_model_path = model_path
            else:
                # is remote use whatever path we were given
                base_model_path = model_path
            
            transformer = SD3Transformer2DModel.from_pretrained(
                transformer_path,
                subfolder=subfolder,
                torch_dtype=dtype,
            )
            if not self.low_vram:
                # for low v ram, we leave it on the cpu. Quantizes slower, but allows training on primary gpu
                transformer.to(torch.device(self.quantize_device), dtype=dtype)
            flush()
            
            if self.model_config.lora_path is not None:
                raise ValueError("LoRA is not supported for SD3 models currently")
            
            if self.model_config.quantize:
                quantization_type = qfloat8
                print("Quantizing transformer")
                quantize(transformer, weights=quantization_type)
                freeze(transformer)
                transformer.to(self.device_torch)
            else:
                transformer.to(self.device_torch, dtype=dtype)
                
            scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler")
            print("Loading vae")
            vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype)
            flush()
            
            print("Loading t5")
            tokenizer_3 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_3", torch_dtype=dtype)
            text_encoder_3 = T5EncoderModel.from_pretrained(
                base_model_path, 
                subfolder="text_encoder_3", 
                torch_dtype=dtype
            )
            
            text_encoder_3.to(self.device_torch, dtype=dtype)
            flush()

            if self.model_config.quantize:
                print("Quantizing T5")
                quantize(text_encoder_3, weights=qfloat8)
                freeze(text_encoder_3)
                flush()
                

            # see if path exists
            if not os.path.exists(model_path) or os.path.isdir(model_path):
                try:
                    # try to load with default diffusers
                    pipe = pipln.from_pretrained(
                        base_model_path,
                        dtype=dtype,
                        device=self.device_torch,
                        tokenizer_3=tokenizer_3,
                        text_encoder_3=text_encoder_3,
                        transformer=transformer,
                        # variant="fp16",
                        use_safetensors=True,
                        repo_type="model",
                        ignore_patterns=["*.md", "*..gitattributes"],
                        **load_args
                    )
                except Exception as e:
                    print(f"Error loading from pretrained: {e}")
                    raise e

            else:
                pipe = pipln.from_single_file(
                    model_path,
                    transformer=transformer,
                    device=self.device_torch,
                    torch_dtype=self.torch_dtype,
                    tokenizer_3=tokenizer_3,
                    text_encoder_3=text_encoder_3,
                    **load_args
                )

            flush()

            text_encoders = [pipe.text_encoder, pipe.text_encoder_2, pipe.text_encoder_3]
            tokenizer = [pipe.tokenizer, pipe.tokenizer_2, pipe.tokenizer_3]
            # replace the to function with a no-op since it throws an error instead of a warning
            # text_encoders[2].to = lambda *args, **kwargs: None
            for text_encoder in text_encoders:
                text_encoder.to(self.device_torch, dtype=dtype)
                text_encoder.requires_grad_(False)
                text_encoder.eval()
            text_encoder = text_encoders


        elif self.model_config.is_pixart:
            te_kwargs = {}
            # handle quantization of TE
            te_is_quantized = False
            if self.model_config.text_encoder_bits == 8:
                te_kwargs['load_in_8bit'] = True
                te_kwargs['device_map'] = "auto"
                te_is_quantized = True
            elif self.model_config.text_encoder_bits == 4:
                te_kwargs['load_in_4bit'] = True
                te_kwargs['device_map'] = "auto"
                te_is_quantized = True

            main_model_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
            if self.model_config.is_pixart_sigma:
                main_model_path = "PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers"

            main_model_path = model_path

            # load the TE in 8bit mode
            text_encoder = T5EncoderModel.from_pretrained(
                main_model_path,
                subfolder="text_encoder",
                torch_dtype=self.torch_dtype,
                **te_kwargs
            )

            # load the transformer
            subfolder = "transformer"
            # check if it is just the unet
            if os.path.exists(model_path) and not os.path.exists(os.path.join(model_path, subfolder)):
                subfolder = None

            if te_is_quantized:
                # replace the to function with a no-op since it throws an error instead of a warning
                text_encoder.to = lambda *args, **kwargs: None

            text_encoder.to(self.te_device_torch, dtype=self.te_torch_dtype)

            if self.model_config.is_pixart_sigma:
                # load the transformer only from the save
                transformer = Transformer2DModel.from_pretrained(
                    model_path if self.model_config.unet_path is None else self.model_config.unet_path,
                    torch_dtype=self.torch_dtype,
                    subfolder='transformer'
                )
                pipe: PixArtSigmaPipeline = PixArtSigmaPipeline.from_pretrained(
                    main_model_path,
                    transformer=transformer,
                    text_encoder=text_encoder,
                    dtype=dtype,
                    device=self.device_torch,
                    **load_args
                )

            else:

                # load the transformer only from the save
                transformer = Transformer2DModel.from_pretrained(model_path, torch_dtype=self.torch_dtype,
                                                                 subfolder=subfolder)
                pipe: PixArtAlphaPipeline = PixArtAlphaPipeline.from_pretrained(
                    main_model_path,
                    transformer=transformer,
                    text_encoder=text_encoder,
                    dtype=dtype,
                    device=self.device_torch,
                    **load_args
                ).to(self.device_torch)

            if self.model_config.unet_sample_size is not None:
                pipe.transformer.config.sample_size = self.model_config.unet_sample_size
            pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype)

            flush()
            # text_encoder = pipe.text_encoder
            # text_encoder.to(self.device_torch, dtype=dtype)
            text_encoder.requires_grad_(False)
            text_encoder.eval()
            pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype)
            tokenizer = pipe.tokenizer

            pipe.vae = pipe.vae.to(self.vae_device_torch, dtype=self.vae_torch_dtype)
            if self.noise_scheduler is None:
                self.noise_scheduler = pipe.scheduler


        elif self.model_config.is_auraflow:
            te_kwargs = {}
            # handle quantization of TE
            te_is_quantized = False
            if self.model_config.text_encoder_bits == 8:
                te_kwargs['load_in_8bit'] = True
                te_kwargs['device_map'] = "auto"
                te_is_quantized = True
            elif self.model_config.text_encoder_bits == 4:
                te_kwargs['load_in_4bit'] = True
                te_kwargs['device_map'] = "auto"
                te_is_quantized = True

            main_model_path = model_path

            # load the TE in 8bit mode
            text_encoder = UMT5EncoderModel.from_pretrained(
                main_model_path,
                subfolder="text_encoder",
                torch_dtype=self.torch_dtype,
                **te_kwargs
            )

            # load the transformer
            subfolder = "transformer"
            # check if it is just the unet
            if os.path.exists(model_path) and not os.path.exists(os.path.join(model_path, subfolder)):
                subfolder = None

            if te_is_quantized:
                # replace the to function with a no-op since it throws an error instead of a warning
                text_encoder.to = lambda *args, **kwargs: None

            # load the transformer only from the save
            transformer = AuraFlowTransformer2DModel.from_pretrained(
                model_path if self.model_config.unet_path is None else self.model_config.unet_path,
                torch_dtype=self.torch_dtype,
                subfolder='transformer'
            )
            pipe: AuraFlowPipeline = AuraFlowPipeline.from_pretrained(
                main_model_path,
                transformer=transformer,
                text_encoder=text_encoder,
                dtype=dtype,
                device=self.device_torch,
                **load_args
            )

            pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype)

            # patch auraflow so it can handle other aspect ratios
            # patch_auraflow_pos_embed(pipe.transformer.pos_embed)

            flush()
            # text_encoder = pipe.text_encoder
            # text_encoder.to(self.device_torch, dtype=dtype)
            text_encoder.requires_grad_(False)
            text_encoder.eval()
            pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype)
            tokenizer = pipe.tokenizer

        elif self.model_config.is_flux:
            print("Loading Flux model")
            base_model_path = "black-forest-labs/FLUX.1-schnell"
            print("Loading transformer")
            subfolder = 'transformer'
            transformer_path = model_path
            local_files_only = False
            # check if HF_DATASETS_OFFLINE or TRANSFORMERS_OFFLINE is set
            if os.path.exists(transformer_path):
                subfolder = None
                transformer_path = os.path.join(transformer_path, 'transformer')
                # check if the path is a full checkpoint.
                te_folder_path = os.path.join(model_path, 'text_encoder')
                # if we have the te, this folder is a full checkpoint, use it as the base
                if os.path.exists(te_folder_path):
                    base_model_path = model_path

            transformer = FluxTransformer2DModel.from_pretrained(
                transformer_path,
                subfolder=subfolder,
                torch_dtype=dtype,
                # low_cpu_mem_usage=False,
                # device_map=None
            )
            if not self.low_vram:
                # for low v ram, we leave it on the cpu. Quantizes slower, but allows training on primary gpu
                transformer.to(torch.device(self.quantize_device), dtype=dtype)
            flush()

            if self.model_config.assistant_lora_path is not None or self.model_config.inference_lora_path is not None:
                if self.model_config.inference_lora_path is not None and self.model_config.assistant_lora_path is not None:
                    raise ValueError("Cannot load both assistant lora and inference lora at the same time")
                
                if self.model_config.lora_path:
                    raise ValueError("Cannot load both assistant lora and lora at the same time")

                if not self.is_flux:
                    raise ValueError("Assistant/ inference lora is only supported for flux models currently")
                
                load_lora_path = self.model_config.inference_lora_path
                if load_lora_path is None:
                    load_lora_path = self.model_config.assistant_lora_path

                if os.path.isdir(load_lora_path):
                    load_lora_path = os.path.join(
                        load_lora_path, "pytorch_lora_weights.safetensors"
                    )
                elif not os.path.exists(load_lora_path):
                    print(f"Grabbing lora from the hub: {load_lora_path}")
                    new_lora_path = hf_hub_download(
                        load_lora_path,
                        filename="pytorch_lora_weights.safetensors"
                    )
                    # replace the path
                    load_lora_path = new_lora_path
                    
                    if self.model_config.inference_lora_path is not None:
                        self.model_config.inference_lora_path = new_lora_path
                    if self.model_config.assistant_lora_path is not None:
                        self.model_config.assistant_lora_path = new_lora_path

                if self.model_config.assistant_lora_path is not None:
                    # for flux, we assume it is flux schnell. We cannot merge in the assistant lora and unmerge it on
                    # quantized weights so it had to process unmerged (slow). Since schnell samples in just 4 steps
                    # it is better to merge it in now, and sample slowly later, otherwise training is slowed in half
                    # so we will merge in now and sample with -1 weight later
                    self.invert_assistant_lora = True
                    # trigger it to get merged in
                    self.model_config.lora_path = self.model_config.assistant_lora_path

            if self.model_config.lora_path is not None:
                print("Fusing in LoRA")
                # need the pipe for peft
                pipe: FluxPipeline = FluxPipeline(
                    scheduler=None,
                    text_encoder=None,
                    tokenizer=None,
                    text_encoder_2=None,
                    tokenizer_2=None,
                    vae=None,
                    transformer=transformer,
                )
                if self.low_vram:
                    # we cannot fuse the loras all at once without ooming in lowvram mode, so we have to do it in parts
                    # we can do it on the cpu but it takes about 5-10 mins vs seconds on the gpu
                    # we are going to separate it into the two transformer blocks one at a time

                    lora_state_dict = load_file(self.model_config.lora_path)
                    single_transformer_lora = {}
                    single_block_key = "transformer.single_transformer_blocks."
                    double_transformer_lora = {}
                    double_block_key = "transformer.transformer_blocks."
                    for key, value in lora_state_dict.items():
                        if single_block_key in key:
                            single_transformer_lora[key] = value
                        elif double_block_key in key:
                            double_transformer_lora[key] = value
                        else:
                            raise ValueError(f"Unknown lora key: {key}. Cannot load this lora in low vram mode")

                    # double blocks
                    transformer.transformer_blocks = transformer.transformer_blocks.to(
                        torch.device(self.quantize_device), dtype=dtype
                    )
                    pipe.load_lora_weights(double_transformer_lora, adapter_name=f"lora1_double")
                    pipe.fuse_lora()
                    pipe.unload_lora_weights()
                    transformer.transformer_blocks = transformer.transformer_blocks.to(
                        'cpu', dtype=dtype
                    )

                    # single blocks
                    transformer.single_transformer_blocks = transformer.single_transformer_blocks.to(
                        torch.device(self.quantize_device), dtype=dtype
                    )
                    pipe.load_lora_weights(single_transformer_lora, adapter_name=f"lora1_single")
                    pipe.fuse_lora()
                    pipe.unload_lora_weights()
                    transformer.single_transformer_blocks = transformer.single_transformer_blocks.to(
                        'cpu', dtype=dtype
                    )

                    # cleanup
                    del single_transformer_lora
                    del double_transformer_lora
                    del lora_state_dict
                    flush()

                else:
                    # need the pipe to do this unfortunately for now
                    # we have to fuse in the weights before quantizing
                    pipe.load_lora_weights(self.model_config.lora_path, adapter_name="lora1")
                    pipe.fuse_lora()
                    # unfortunately, not an easier way with peft
                    pipe.unload_lora_weights()
            flush()

            if self.model_config.quantize:
                quantization_type = qfloat8
                print("Quantizing transformer")
                quantize(transformer, weights=quantization_type)
                freeze(transformer)
                transformer.to(self.device_torch)
            else:
                transformer.to(self.device_torch, dtype=dtype)

            flush()

            scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler")
            print("Loading vae")
            vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype)
            flush()

            print("Loading t5")
            tokenizer_2 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_2", torch_dtype=dtype)
            text_encoder_2 = T5EncoderModel.from_pretrained(base_model_path, subfolder="text_encoder_2",
                                                            torch_dtype=dtype)

            text_encoder_2.to(self.device_torch, dtype=dtype)
            flush()

            print("Quantizing T5")
            quantize(text_encoder_2, weights=qfloat8)
            freeze(text_encoder_2)
            flush()

            print("Loading clip")
            text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder="text_encoder", torch_dtype=dtype)
            tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer", torch_dtype=dtype)
            text_encoder.to(self.device_torch, dtype=dtype)

            print("making pipe")
            pipe: FluxPipeline = FluxPipeline(
                scheduler=scheduler,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                text_encoder_2=None,
                tokenizer_2=tokenizer_2,
                vae=vae,
                transformer=None,
            )
            pipe.text_encoder_2 = text_encoder_2
            pipe.transformer = transformer

            print("preparing")

            text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
            tokenizer = [pipe.tokenizer, pipe.tokenizer_2]

            pipe.transformer = pipe.transformer.to(self.device_torch)

            flush()
            text_encoder[0].to(self.device_torch)
            text_encoder[0].requires_grad_(False)
            text_encoder[0].eval()
            text_encoder[1].to(self.device_torch)
            text_encoder[1].requires_grad_(False)
            text_encoder[1].eval()
            pipe.transformer = pipe.transformer.to(self.device_torch)
            flush()
        else:
            if self.custom_pipeline is not None:
                pipln = self.custom_pipeline
            else:
                pipln = StableDiffusionPipeline

            if self.model_config.text_encoder_bits < 16:
                # this is only supported for T5 models for now
                te_kwargs = {}
                # handle quantization of TE
                te_is_quantized = False
                if self.model_config.text_encoder_bits == 8:
                    te_kwargs['load_in_8bit'] = True
                    te_kwargs['device_map'] = "auto"
                    te_is_quantized = True
                elif self.model_config.text_encoder_bits == 4:
                    te_kwargs['load_in_4bit'] = True
                    te_kwargs['device_map'] = "auto"
                    te_is_quantized = True

                text_encoder = T5EncoderModel.from_pretrained(
                    model_path,
                    subfolder="text_encoder",
                    torch_dtype=self.te_torch_dtype,
                    **te_kwargs
                )
                # replace the to function with a no-op since it throws an error instead of a warning
                text_encoder.to = lambda *args, **kwargs: None

                load_args['text_encoder'] = text_encoder

            # see if path exists
            if not os.path.exists(model_path) or os.path.isdir(model_path):
                # try to load with default diffusers
                pipe = pipln.from_pretrained(
                    model_path,
                    dtype=dtype,
                    device=self.device_torch,
                    load_safety_checker=False,
                    requires_safety_checker=False,
                    safety_checker=None,
                    # variant="fp16",
                    trust_remote_code=True,
                    **load_args
                )
            else:
                pipe = pipln.from_single_file(
                    model_path,
                    dtype=dtype,
                    device=self.device_torch,
                    load_safety_checker=False,
                    requires_safety_checker=False,
                    torch_dtype=self.torch_dtype,
                    safety_checker=None,
                    trust_remote_code=True,
                    **load_args
                )
            flush()

            pipe.register_to_config(requires_safety_checker=False)
            text_encoder = pipe.text_encoder
            text_encoder.to(self.te_device_torch, dtype=self.te_torch_dtype)
            text_encoder.requires_grad_(False)
            text_encoder.eval()
            tokenizer = pipe.tokenizer

        # scheduler doesn't get set sometimes, so we set it here
        pipe.scheduler = self.noise_scheduler

        # add hacks to unet to help training
        # pipe.unet = prepare_unet_for_training(pipe.unet)

        if self.is_pixart or self.is_v3 or self.is_auraflow or self.is_flux:
            # pixart and sd3 dont use a unet
            self.unet = pipe.transformer
        else:
            self.unet: 'UNet2DConditionModel' = pipe.unet
        self.vae: 'AutoencoderKL' = pipe.vae.to(self.vae_device_torch, dtype=self.vae_torch_dtype)
        self.vae.eval()
        self.vae.requires_grad_(False)
        VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1)
        self.vae_scale_factor = VAE_SCALE_FACTOR
        self.unet.to(self.device_torch, dtype=dtype)
        self.unet.requires_grad_(False)
        self.unet.eval()

        # load any loras we have
        if self.model_config.lora_path is not None and not self.is_flux:
            pipe.load_lora_weights(self.model_config.lora_path, adapter_name="lora1")
            pipe.fuse_lora()
            # unfortunately, not an easier way with peft
            pipe.unload_lora_weights()

        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        self.pipeline = pipe
        self.load_refiner()
        self.is_loaded = True

        if self.model_config.assistant_lora_path is not None:
            print("Loading assistant lora")
            self.assistant_lora: 'LoRASpecialNetwork' = load_assistant_lora_from_path(
                self.model_config.assistant_lora_path, self)

            if self.invert_assistant_lora:
                # invert and disable during training
                self.assistant_lora.multiplier = -1.0
                self.assistant_lora.is_active = False
                
        if self.model_config.inference_lora_path is not None:
            print("Loading inference lora")
            self.assistant_lora: 'LoRASpecialNetwork' = load_assistant_lora_from_path(
                self.model_config.inference_lora_path, self)
            # disable during training
            self.assistant_lora.is_active = False

        if self.is_pixart and self.vae_scale_factor == 16:
            # TODO make our own pipeline?
            # we generate an image 2x larger, so we need to copy the sizes from larger ones down
            # ASPECT_RATIO_1024_BIN, ASPECT_RATIO_512_BIN, ASPECT_RATIO_2048_BIN, ASPECT_RATIO_256_BIN
            for key in ASPECT_RATIO_256_BIN.keys():
                ASPECT_RATIO_256_BIN[key] = [ASPECT_RATIO_256_BIN[key][0] * 2, ASPECT_RATIO_256_BIN[key][1] * 2]
            for key in ASPECT_RATIO_512_BIN.keys():
                ASPECT_RATIO_512_BIN[key] = [ASPECT_RATIO_512_BIN[key][0] * 2, ASPECT_RATIO_512_BIN[key][1] * 2]
            for key in ASPECT_RATIO_1024_BIN.keys():
                ASPECT_RATIO_1024_BIN[key] = [ASPECT_RATIO_1024_BIN[key][0] * 2, ASPECT_RATIO_1024_BIN[key][1] * 2]
            for key in ASPECT_RATIO_2048_BIN.keys():
                ASPECT_RATIO_2048_BIN[key] = [ASPECT_RATIO_2048_BIN[key][0] * 2, ASPECT_RATIO_2048_BIN[key][1] * 2]

    def te_train(self):
        if isinstance(self.text_encoder, list):
            for te in self.text_encoder:
                te.train()
        else:
            self.text_encoder.train()

    def te_eval(self):
        if isinstance(self.text_encoder, list):
            for te in self.text_encoder:
                te.eval()
        else:
            self.text_encoder.eval()

    def load_refiner(self):
        # for now, we are just going to rely on the TE from the base model
        # which is TE2 for SDXL and TE for SD (no refiner currently)
        # and completely ignore a TE that may or may not be packaged with the refiner
        if self.model_config.refiner_name_or_path is not None:
            refiner_config_path = os.path.join(ORIG_CONFIGS_ROOT, 'sd_xl_refiner.yaml')
            # load the refiner model
            dtype = get_torch_dtype(self.dtype)
            model_path = self.model_config.refiner_name_or_path
            if not os.path.exists(model_path) or os.path.isdir(model_path):
                # TODO only load unet??
                refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
                    model_path,
                    dtype=dtype,
                    device=self.device_torch,
                    # variant="fp16",
                    use_safetensors=True,
                ).to(self.device_torch)
            else:
                refiner = StableDiffusionXLImg2ImgPipeline.from_single_file(
                    model_path,
                    dtype=dtype,
                    device=self.device_torch,
                    torch_dtype=self.torch_dtype,
                    original_config_file=refiner_config_path,
                ).to(self.device_torch)

            self.refiner_unet = refiner.unet
            del refiner
            flush()

    @torch.no_grad()
    def generate_images(
            self,
            image_configs: List[GenerateImageConfig],
            sampler=None,
            pipeline: Union[None, StableDiffusionPipeline, StableDiffusionXLPipeline] = None,
    ):
        merge_multiplier = 1.0
        flush()
        # if using assistant, unfuse it
        if self.model_config.assistant_lora_path is not None:
            print("Unloading assistant lora")
            if self.invert_assistant_lora:
                self.assistant_lora.is_active = True
                # move weights on to the device
                self.assistant_lora.force_to(self.device_torch, self.torch_dtype)
            else:
                self.assistant_lora.is_active = False
                
        if self.model_config.inference_lora_path is not None:
            print("Loading inference lora")
            self.assistant_lora.is_active = True
            # move weights on to the device
            self.assistant_lora.force_to(self.device_torch, self.torch_dtype)

        if self.network is not None:
            self.network.eval()
            network = self.network
            # check if we have the same network weight for all samples. If we do, we can merge in th
            # the network to drastically speed up inference
            unique_network_weights = set([x.network_multiplier for x in image_configs])
            if len(unique_network_weights) == 1 and self.network.can_merge_in:
                can_merge_in = True
                merge_multiplier = unique_network_weights.pop()
                network.merge_in(merge_weight=merge_multiplier)
        else:
            network = BlankNetwork()

        self.save_device_state()
        self.set_device_state_preset('generate')

        # save current seed state for training
        rng_state = torch.get_rng_state()
        cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None

        if pipeline is None:
            noise_scheduler = self.noise_scheduler
            if sampler is not None:
                if sampler.startswith("sample_"):  # sample_dpmpp_2m
                    # using ksampler
                    noise_scheduler = get_sampler(
                        'lms', {
                            "prediction_type": self.prediction_type,
                        })
                else:
                    noise_scheduler = get_sampler(
                        sampler,
                        {
                            "prediction_type": self.prediction_type,
                        },
                        'sd' if not self.is_pixart else 'pixart'
                    )

                try:
                    noise_scheduler = noise_scheduler.to(self.device_torch, self.torch_dtype)
                except:
                    pass

            if sampler.startswith("sample_") and self.is_xl:
                # using kdiffusion
                Pipe = StableDiffusionKDiffusionXLPipeline
            elif self.is_xl:
                Pipe = StableDiffusionXLPipeline
            elif self.is_v3:
                Pipe = StableDiffusion3Pipeline
            else:
                Pipe = StableDiffusionPipeline

            extra_args = {}
            if self.adapter is not None:
                if isinstance(self.adapter, T2IAdapter):
                    if self.is_xl:
                        Pipe = StableDiffusionXLAdapterPipeline
                    else:
                        Pipe = StableDiffusionAdapterPipeline
                    extra_args['adapter'] = self.adapter
                elif isinstance(self.adapter, ControlNetModel):
                    if self.is_xl:
                        Pipe = StableDiffusionXLControlNetPipeline
                    else:
                        Pipe = StableDiffusionControlNetPipeline
                    extra_args['controlnet'] = self.adapter
                elif isinstance(self.adapter, ReferenceAdapter):
                    # pass the noise scheduler to the adapter
                    self.adapter.noise_scheduler = noise_scheduler
                else:
                    if self.is_xl:
                        extra_args['add_watermarker'] = False

            # TODO add clip skip
            if self.is_xl:
                pipeline = Pipe(
                    vae=self.vae,
                    unet=self.unet,
                    text_encoder=self.text_encoder[0],
                    text_encoder_2=self.text_encoder[1],
                    tokenizer=self.tokenizer[0],
                    tokenizer_2=self.tokenizer[1],
                    scheduler=noise_scheduler,
                    **extra_args
                ).to(self.device_torch)
                pipeline.watermark = None
            elif self.is_flux:
                if self.model_config.use_flux_cfg:
                    pipeline = FluxWithCFGPipeline(
                        vae=self.vae,
                        transformer=self.unet,
                        text_encoder=self.text_encoder[0],
                        text_encoder_2=self.text_encoder[1],
                        tokenizer=self.tokenizer[0],
                        tokenizer_2=self.tokenizer[1],
                        scheduler=noise_scheduler,
                        **extra_args
                    )

                else:
                    pipeline = FluxPipeline(
                        vae=self.vae,
                        transformer=self.unet,
                        text_encoder=self.text_encoder[0],
                        text_encoder_2=self.text_encoder[1],
                        tokenizer=self.tokenizer[0],
                        tokenizer_2=self.tokenizer[1],
                        scheduler=noise_scheduler,
                        **extra_args
                    )
                pipeline.watermark = None
            elif self.is_v3:
                pipeline = Pipe(
                    vae=self.vae,
                    transformer=self.unet,
                    text_encoder=self.text_encoder[0],
                    text_encoder_2=self.text_encoder[1],
                    text_encoder_3=self.text_encoder[2],
                    tokenizer=self.tokenizer[0],
                    tokenizer_2=self.tokenizer[1],
                    tokenizer_3=self.tokenizer[2],
                    scheduler=noise_scheduler,
                    **extra_args
                )
            elif self.is_pixart:
                pipeline = PixArtSigmaPipeline(
                    vae=self.vae,
                    transformer=self.unet,
                    text_encoder=self.text_encoder,
                    tokenizer=self.tokenizer,
                    scheduler=noise_scheduler,
                    **extra_args
                )

            elif self.is_auraflow:
                pipeline = AuraFlowPipeline(
                    vae=self.vae,
                    transformer=self.unet,
                    text_encoder=self.text_encoder,
                    tokenizer=self.tokenizer,
                    scheduler=noise_scheduler,
                    **extra_args
                )

            else:
                pipeline = Pipe(
                    vae=self.vae,
                    unet=self.unet,
                    text_encoder=self.text_encoder,
                    tokenizer=self.tokenizer,
                    scheduler=noise_scheduler,
                    safety_checker=None,
                    feature_extractor=None,
                    requires_safety_checker=False,
                    **extra_args
                )
            flush()
            # disable progress bar
            pipeline.set_progress_bar_config(disable=True)

            if sampler.startswith("sample_"):
                pipeline.set_scheduler(sampler)

        refiner_pipeline = None
        if self.refiner_unet:
            # build refiner pipeline
            refiner_pipeline = StableDiffusionXLImg2ImgPipeline(
                vae=pipeline.vae,
                unet=self.refiner_unet,
                text_encoder=None,
                text_encoder_2=pipeline.text_encoder_2,
                tokenizer=None,
                tokenizer_2=pipeline.tokenizer_2,
                scheduler=pipeline.scheduler,
                add_watermarker=False,
                requires_aesthetics_score=True,
            ).to(self.device_torch)
            # refiner_pipeline.register_to_config(requires_aesthetics_score=False)
            refiner_pipeline.watermark = None
            refiner_pipeline.set_progress_bar_config(disable=True)
            flush()

        start_multiplier = 1.0
        if self.network is not None:
            start_multiplier = self.network.multiplier

        # pipeline.to(self.device_torch)

        with network:
            with torch.no_grad():
                if self.network is not None:
                    assert self.network.is_active

                for i in tqdm(range(len(image_configs)), desc=f"Generating Images", leave=False):
                    gen_config = image_configs[i]

                    extra = {}
                    validation_image = None
                    if self.adapter is not None and gen_config.adapter_image_path is not None:
                        validation_image = Image.open(gen_config.adapter_image_path).convert("RGB")
                        if isinstance(self.adapter, T2IAdapter):
                            # not sure why this is double??
                            validation_image = validation_image.resize((gen_config.width * 2, gen_config.height * 2))
                            extra['image'] = validation_image
                            extra['adapter_conditioning_scale'] = gen_config.adapter_conditioning_scale
                        if isinstance(self.adapter, ControlNetModel):
                            validation_image = validation_image.resize((gen_config.width, gen_config.height))
                            extra['image'] = validation_image
                            extra['controlnet_conditioning_scale'] = gen_config.adapter_conditioning_scale
                        if isinstance(self.adapter, IPAdapter) or isinstance(self.adapter, ClipVisionAdapter):
                            transform = transforms.Compose([
                                transforms.ToTensor(),
                            ])
                            validation_image = transform(validation_image)
                        if isinstance(self.adapter, CustomAdapter):
                            # todo allow loading multiple
                            transform = transforms.Compose([
                                transforms.ToTensor(),
                            ])
                            validation_image = transform(validation_image)
                            self.adapter.num_images = 1
                        if isinstance(self.adapter, ReferenceAdapter):
                            # need -1 to 1
                            validation_image = transforms.ToTensor()(validation_image)
                            validation_image = validation_image * 2.0 - 1.0
                            validation_image = validation_image.unsqueeze(0)
                            self.adapter.set_reference_images(validation_image)

                    if self.network is not None:
                        self.network.multiplier = gen_config.network_multiplier
                    torch.manual_seed(gen_config.seed)
                    torch.cuda.manual_seed(gen_config.seed)

                    if self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter) \
                            and gen_config.adapter_image_path is not None:
                        # run through the adapter to saturate the embeds
                        conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(validation_image)
                        self.adapter(conditional_clip_embeds)

                    if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
                        # handle condition the prompts
                        gen_config.prompt = self.adapter.condition_prompt(
                            gen_config.prompt,
                            is_unconditional=False,
                        )
                        gen_config.prompt_2 = gen_config.prompt
                        gen_config.negative_prompt = self.adapter.condition_prompt(
                            gen_config.negative_prompt,
                            is_unconditional=True,
                        )
                        gen_config.negative_prompt_2 = gen_config.negative_prompt

                    if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and validation_image is not None:
                        self.adapter.trigger_pre_te(
                            tensors_0_1=validation_image,
                            is_training=False,
                            has_been_preprocessed=False,
                            quad_count=4
                        )

                    # encode the prompt ourselves so we can do fun stuff with embeddings
                    if isinstance(self.adapter, CustomAdapter):
                        self.adapter.is_unconditional_run = False
                    conditional_embeds = self.encode_prompt(gen_config.prompt, gen_config.prompt_2, force_all=True)

                    if isinstance(self.adapter, CustomAdapter):
                        self.adapter.is_unconditional_run = True
                    unconditional_embeds = self.encode_prompt(
                        gen_config.negative_prompt, gen_config.negative_prompt_2, force_all=True
                    )
                    if isinstance(self.adapter, CustomAdapter):
                        self.adapter.is_unconditional_run = False

                    # allow any manipulations to take place to embeddings
                    gen_config.post_process_embeddings(
                        conditional_embeds,
                        unconditional_embeds,
                    )

                    if self.adapter is not None and isinstance(self.adapter, IPAdapter) \
                            and gen_config.adapter_image_path is not None:
                        # apply the image projection
                        conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(validation_image)
                        unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(validation_image,
                                                                                                    True)
                        conditional_embeds = self.adapter(conditional_embeds, conditional_clip_embeds, is_unconditional=False)
                        unconditional_embeds = self.adapter(unconditional_embeds, unconditional_clip_embeds, is_unconditional=True)

                    if self.adapter is not None and isinstance(self.adapter,
                                                               CustomAdapter) and validation_image is not None:
                        conditional_embeds = self.adapter.condition_encoded_embeds(
                            tensors_0_1=validation_image,
                            prompt_embeds=conditional_embeds,
                            is_training=False,
                            has_been_preprocessed=False,
                            is_generating_samples=True,
                        )
                        unconditional_embeds = self.adapter.condition_encoded_embeds(
                            tensors_0_1=validation_image,
                            prompt_embeds=unconditional_embeds,
                            is_training=False,
                            has_been_preprocessed=False,
                            is_unconditional=True,
                            is_generating_samples=True,
                        )

                    if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and len(
                            gen_config.extra_values) > 0:
                        extra_values = torch.tensor([gen_config.extra_values], device=self.device_torch,
                                                    dtype=self.torch_dtype)
                        # apply extra values to the embeddings
                        self.adapter.add_extra_values(extra_values, is_unconditional=False)
                        self.adapter.add_extra_values(torch.zeros_like(extra_values), is_unconditional=True)
                        pass  # todo remove, for debugging

                    if self.refiner_unet is not None and gen_config.refiner_start_at < 1.0:
                        # if we have a refiner loaded, set the denoising end at the refiner start
                        extra['denoising_end'] = gen_config.refiner_start_at
                        extra['output_type'] = 'latent'
                        if not self.is_xl:
                            raise ValueError("Refiner is only supported for XL models")

                    conditional_embeds = conditional_embeds.to(self.device_torch, dtype=self.unet.dtype)
                    unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=self.unet.dtype)

                    if self.is_xl:
                        # fix guidance rescale for sdxl
                        # was trained on 0.7 (I believe)

                        grs = gen_config.guidance_rescale
                        # if grs is None or grs < 0.00001:
                        #     grs = 0.7
                        # grs = 0.0

                        if sampler.startswith("sample_"):
                            extra['use_karras_sigmas'] = True
                            extra = {
                                **extra,
                                **gen_config.extra_kwargs,
                            }

                        img = pipeline(
                            # prompt=gen_config.prompt,
                            # prompt_2=gen_config.prompt_2,
                            prompt_embeds=conditional_embeds.text_embeds,
                            pooled_prompt_embeds=conditional_embeds.pooled_embeds,
                            negative_prompt_embeds=unconditional_embeds.text_embeds,
                            negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
                            # negative_prompt=gen_config.negative_prompt,
                            # negative_prompt_2=gen_config.negative_prompt_2,
                            height=gen_config.height,
                            width=gen_config.width,
                            num_inference_steps=gen_config.num_inference_steps,
                            guidance_scale=gen_config.guidance_scale,
                            guidance_rescale=grs,
                            latents=gen_config.latents,
                            **extra
                        ).images[0]
                    elif self.is_v3:
                        img = pipeline(
                            prompt_embeds=conditional_embeds.text_embeds,
                            pooled_prompt_embeds=conditional_embeds.pooled_embeds,
                            negative_prompt_embeds=unconditional_embeds.text_embeds,
                            negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
                            height=gen_config.height,
                            width=gen_config.width,
                            num_inference_steps=gen_config.num_inference_steps,
                            guidance_scale=gen_config.guidance_scale,
                            latents=gen_config.latents,
                            **extra
                        ).images[0]
                    elif self.is_flux:
                        if self.model_config.use_flux_cfg:
                            img = pipeline(
                                prompt_embeds=conditional_embeds.text_embeds,
                                pooled_prompt_embeds=conditional_embeds.pooled_embeds,
                                negative_prompt_embeds=unconditional_embeds.text_embeds,
                                negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
                                height=gen_config.height,
                                width=gen_config.width,
                                num_inference_steps=gen_config.num_inference_steps,
                                guidance_scale=gen_config.guidance_scale,
                                latents=gen_config.latents,
                                **extra
                            ).images[0]
                        else:
                            img = pipeline(
                                prompt_embeds=conditional_embeds.text_embeds,
                                pooled_prompt_embeds=conditional_embeds.pooled_embeds,
                                # negative_prompt_embeds=unconditional_embeds.text_embeds,
                                # negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
                                height=gen_config.height,
                                width=gen_config.width,
                                num_inference_steps=gen_config.num_inference_steps,
                                guidance_scale=gen_config.guidance_scale,
                                latents=gen_config.latents,
                                **extra
                            ).images[0]
                    elif self.is_pixart:
                        # needs attention masks for some reason
                        img = pipeline(
                            prompt=None,
                            prompt_embeds=conditional_embeds.text_embeds.to(self.device_torch, dtype=self.unet.dtype),
                            prompt_attention_mask=conditional_embeds.attention_mask.to(self.device_torch,
                                                                                       dtype=self.unet.dtype),
                            negative_prompt_embeds=unconditional_embeds.text_embeds.to(self.device_torch,
                                                                                       dtype=self.unet.dtype),
                            negative_prompt_attention_mask=unconditional_embeds.attention_mask.to(self.device_torch,
                                                                                                  dtype=self.unet.dtype),
                            negative_prompt=None,
                            # negative_prompt=gen_config.negative_prompt,
                            height=gen_config.height,
                            width=gen_config.width,
                            num_inference_steps=gen_config.num_inference_steps,
                            guidance_scale=gen_config.guidance_scale,
                            latents=gen_config.latents,
                            **extra
                        ).images[0]
                    elif self.is_auraflow:
                        pipeline: AuraFlowPipeline = pipeline

                        img = pipeline(
                            prompt=None,
                            prompt_embeds=conditional_embeds.text_embeds.to(self.device_torch, dtype=self.unet.dtype),
                            prompt_attention_mask=conditional_embeds.attention_mask.to(self.device_torch,
                                                                                       dtype=self.unet.dtype),
                            negative_prompt_embeds=unconditional_embeds.text_embeds.to(self.device_torch,
                                                                                       dtype=self.unet.dtype),
                            negative_prompt_attention_mask=unconditional_embeds.attention_mask.to(self.device_torch,
                                                                                                  dtype=self.unet.dtype),
                            negative_prompt=None,
                            # negative_prompt=gen_config.negative_prompt,
                            height=gen_config.height,
                            width=gen_config.width,
                            num_inference_steps=gen_config.num_inference_steps,
                            guidance_scale=gen_config.guidance_scale,
                            latents=gen_config.latents,
                            **extra
                        ).images[0]
                    else:
                        img = pipeline(
                            # prompt=gen_config.prompt,
                            prompt_embeds=conditional_embeds.text_embeds,
                            negative_prompt_embeds=unconditional_embeds.text_embeds,
                            # negative_prompt=gen_config.negative_prompt,
                            height=gen_config.height,
                            width=gen_config.width,
                            num_inference_steps=gen_config.num_inference_steps,
                            guidance_scale=gen_config.guidance_scale,
                            latents=gen_config.latents,
                            **extra
                        ).images[0]

                    if self.refiner_unet is not None and gen_config.refiner_start_at < 1.0:
                        # slide off just the last 1280 on the last dim as refiner does not use first text encoder
                        # todo, should we just use the Text encoder for the refiner? Fine tuned versions will differ
                        refiner_text_embeds = conditional_embeds.text_embeds[:, :, -1280:]
                        refiner_unconditional_text_embeds = unconditional_embeds.text_embeds[:, :, -1280:]
                        # run through refiner
                        img = refiner_pipeline(
                            # prompt=gen_config.prompt,
                            # prompt_2=gen_config.prompt_2,

                            # slice these as it does not use both text encoders
                            # height=gen_config.height,
                            # width=gen_config.width,
                            prompt_embeds=refiner_text_embeds,
                            pooled_prompt_embeds=conditional_embeds.pooled_embeds,
                            negative_prompt_embeds=refiner_unconditional_text_embeds,
                            negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
                            num_inference_steps=gen_config.num_inference_steps,
                            guidance_scale=gen_config.guidance_scale,
                            guidance_rescale=grs,
                            denoising_start=gen_config.refiner_start_at,
                            denoising_end=gen_config.num_inference_steps,
                            image=img.unsqueeze(0)
                        ).images[0]

                    gen_config.save_image(img, i)
                    gen_config.log_image(img, i)

                if self.adapter is not None and isinstance(self.adapter, ReferenceAdapter):
                    self.adapter.clear_memory()

        # clear pipeline and cache to reduce vram usage
        del pipeline
        if refiner_pipeline is not None:
            del refiner_pipeline
        torch.cuda.empty_cache()

        # restore training state
        torch.set_rng_state(rng_state)
        if cuda_rng_state is not None:
            torch.cuda.set_rng_state(cuda_rng_state)

        self.restore_device_state()
        if self.network is not None:
            self.network.train()
            self.network.multiplier = start_multiplier

        self.unet.to(self.device_torch, dtype=self.torch_dtype)
        if network.is_merged_in:
            network.merge_out(merge_multiplier)
        # self.tokenizer.to(original_device_dict['tokenizer'])

        # refuse loras
        if self.model_config.assistant_lora_path is not None:
            print("Loading assistant lora")
            if self.invert_assistant_lora:
                self.assistant_lora.is_active = False
                # move weights off the device
                self.assistant_lora.force_to('cpu', self.torch_dtype)
            else:
                self.assistant_lora.is_active = True
                
        if self.model_config.inference_lora_path is not None:
            print("Unloading inference lora")
            self.assistant_lora.is_active = False
            # move weights off the device
            self.assistant_lora.force_to('cpu', self.torch_dtype)

        flush()

    def get_latent_noise(
            self,
            height=None,
            width=None,
            pixel_height=None,
            pixel_width=None,
            batch_size=1,
            noise_offset=0.0,
    ):
        VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1)
        if height is None and pixel_height is None:
            raise ValueError("height or pixel_height must be specified")
        if width is None and pixel_width is None:
            raise ValueError("width or pixel_width must be specified")
        if height is None:
            height = pixel_height // VAE_SCALE_FACTOR
        if width is None:
            width = pixel_width // VAE_SCALE_FACTOR

        num_channels = self.unet.config['in_channels']
        if self.is_flux:
            # has 64 channels in for some reason
            num_channels = 16
        noise = torch.randn(
            (
                batch_size,
                num_channels,
                height,
                width,
            ),
            device=self.unet.device,
        )
        noise = apply_noise_offset(noise, noise_offset)
        return noise

    def get_time_ids_from_latents(self, latents: torch.Tensor, requires_aesthetic_score=False):
        VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1)
        if self.is_xl:
            bs, ch, h, w = list(latents.shape)

            height = h * VAE_SCALE_FACTOR
            width = w * VAE_SCALE_FACTOR

            dtype = latents.dtype
            # just do it without any cropping nonsense
            target_size = (height, width)
            original_size = (height, width)
            crops_coords_top_left = (0, 0)
            if requires_aesthetic_score:
                # refiner
                # https://huggingface.co/papers/2307.01952
                aesthetic_score = 6.0  # simulate one
                add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
            else:
                add_time_ids = list(original_size + crops_coords_top_left + target_size)
            add_time_ids = torch.tensor([add_time_ids])
            add_time_ids = add_time_ids.to(latents.device, dtype=dtype)

            batch_time_ids = torch.cat(
                [add_time_ids for _ in range(bs)]
            )
            return batch_time_ids
        else:
            return None

    def add_noise(
            self,
            original_samples: torch.FloatTensor,
            noise: torch.FloatTensor,
            timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        original_samples_chunks = torch.chunk(original_samples, original_samples.shape[0], dim=0)
        noise_chunks = torch.chunk(noise, noise.shape[0], dim=0)
        timesteps_chunks = torch.chunk(timesteps, timesteps.shape[0], dim=0)

        if len(timesteps_chunks) == 1 and len(timesteps_chunks) != len(original_samples_chunks):
            timesteps_chunks = [timesteps_chunks[0]] * len(original_samples_chunks)

        noisy_latents_chunks = []

        for idx in range(original_samples.shape[0]):
            noisy_latents = self.noise_scheduler.add_noise(original_samples_chunks[idx], noise_chunks[idx],
                                                           timesteps_chunks[idx])
            noisy_latents_chunks.append(noisy_latents)

        noisy_latents = torch.cat(noisy_latents_chunks, dim=0)
        return noisy_latents

    def predict_noise(
            self,
            latents: torch.Tensor,
            text_embeddings: Union[PromptEmbeds, None] = None,
            timestep: Union[int, torch.Tensor] = 1,
            guidance_scale=7.5,
            guidance_rescale=0,
            add_time_ids=None,
            conditional_embeddings: Union[PromptEmbeds, None] = None,
            unconditional_embeddings: Union[PromptEmbeds, None] = None,
            is_input_scaled=False,
            detach_unconditional=False,
            rescale_cfg=None,
            return_conditional_pred=False,
            guidance_embedding_scale=1.0,
            **kwargs,
    ):
        conditional_pred = None
        # get the embeddings
        if text_embeddings is None and conditional_embeddings is None:
            raise ValueError("Either text_embeddings or conditional_embeddings must be specified")
        if text_embeddings is None and unconditional_embeddings is not None:
            text_embeddings = concat_prompt_embeds([
                unconditional_embeddings,  # negative embedding
                conditional_embeddings,  # positive embedding
            ])
        elif text_embeddings is None and conditional_embeddings is not None:
            # not doing cfg
            text_embeddings = conditional_embeddings

        # CFG is comparing neg and positive, if we have concatenated embeddings
        # then we are doing it, otherwise we are not and takes half the time.
        do_classifier_free_guidance = True

        # check if batch size of embeddings matches batch size of latents
        if latents.shape[0] == text_embeddings.text_embeds.shape[0]:
            do_classifier_free_guidance = False
        elif latents.shape[0] * 2 != text_embeddings.text_embeds.shape[0]:
            raise ValueError("Batch size of latents must be the same or half the batch size of text embeddings")
        latents = latents.to(self.device_torch)
        text_embeddings = text_embeddings.to(self.device_torch)
        timestep = timestep.to(self.device_torch)

        # if timestep is zero dim, unsqueeze it
        if len(timestep.shape) == 0:
            timestep = timestep.unsqueeze(0)

        # if we only have 1 timestep, we can just use the same timestep for all
        if timestep.shape[0] == 1 and latents.shape[0] > 1:
            # check if it is rank 1 or 2
            if len(timestep.shape) == 1:
                timestep = timestep.repeat(latents.shape[0])
            else:
                timestep = timestep.repeat(latents.shape[0], 0)

        # handle t2i adapters
        if 'down_intrablock_additional_residuals' in kwargs:
            # go through each item and concat if doing cfg and it doesnt have the same shape
            for idx, item in enumerate(kwargs['down_intrablock_additional_residuals']):
                if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]:
                    kwargs['down_intrablock_additional_residuals'][idx] = torch.cat([item] * 2, dim=0)

        # handle controlnet
        if 'down_block_additional_residuals' in kwargs and 'mid_block_additional_residual' in kwargs:
            # go through each item and concat if doing cfg and it doesnt have the same shape
            for idx, item in enumerate(kwargs['down_block_additional_residuals']):
                if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]:
                    kwargs['down_block_additional_residuals'][idx] = torch.cat([item] * 2, dim=0)
            for idx, item in enumerate(kwargs['mid_block_additional_residual']):
                if do_classifier_free_guidance and item.shape[0] != text_embeddings.text_embeds.shape[0]:
                    kwargs['mid_block_additional_residual'][idx] = torch.cat([item] * 2, dim=0)

        def scale_model_input(model_input, timestep_tensor):
            if is_input_scaled:
                return model_input
            mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0)
            timestep_chunks = torch.chunk(timestep_tensor, timestep_tensor.shape[0], dim=0)
            out_chunks = []
            # unsqueeze if timestep is zero dim
            for idx in range(model_input.shape[0]):
                # if scheduler has step_index
                if hasattr(self.noise_scheduler, '_step_index'):
                    self.noise_scheduler._step_index = None
                out_chunks.append(
                    self.noise_scheduler.scale_model_input(mi_chunks[idx], timestep_chunks[idx])
                )
            return torch.cat(out_chunks, dim=0)

        if self.is_xl:
            with torch.no_grad():
                # 16, 6 for bs of 4
                if add_time_ids is None:
                    add_time_ids = self.get_time_ids_from_latents(latents)

                    if do_classifier_free_guidance:
                        # todo check this with larget batches
                        add_time_ids = torch.cat([add_time_ids] * 2)

                if do_classifier_free_guidance:
                    latent_model_input = torch.cat([latents] * 2)
                    timestep = torch.cat([timestep] * 2)
                else:
                    latent_model_input = latents

                latent_model_input = scale_model_input(latent_model_input, timestep)

                added_cond_kwargs = {
                    # todo can we zero here the second text encoder? or match a blank string?
                    "text_embeds": text_embeddings.pooled_embeds,
                    "time_ids": add_time_ids,
                }

            if self.model_config.refiner_name_or_path is not None:
                # we have the refiner on the second half of everything. Do Both
                if do_classifier_free_guidance:
                    raise ValueError("Refiner is not supported with classifier free guidance")

                if self.unet.training:
                    input_chunks = torch.chunk(latent_model_input, 2, dim=0)
                    timestep_chunks = torch.chunk(timestep, 2, dim=0)
                    added_cond_kwargs_chunked = {
                        "text_embeds": torch.chunk(text_embeddings.pooled_embeds, 2, dim=0),
                        "time_ids": torch.chunk(add_time_ids, 2, dim=0),
                    }
                    text_embeds_chunks = torch.chunk(text_embeddings.text_embeds, 2, dim=0)

                    # predict the noise residual
                    base_pred = self.unet(
                        input_chunks[0],
                        timestep_chunks[0],
                        encoder_hidden_states=text_embeds_chunks[0],
                        added_cond_kwargs={
                            "text_embeds": added_cond_kwargs_chunked['text_embeds'][0],
                            "time_ids": added_cond_kwargs_chunked['time_ids'][0],
                        },
                        **kwargs,
                    ).sample

                    refiner_pred = self.refiner_unet(
                        input_chunks[1],
                        timestep_chunks[1],
                        encoder_hidden_states=text_embeds_chunks[1][:, :, -1280:],
                        # just use the first second text encoder
                        added_cond_kwargs={
                            "text_embeds": added_cond_kwargs_chunked['text_embeds'][1],
                            # "time_ids": added_cond_kwargs_chunked['time_ids'][1],
                            "time_ids": self.get_time_ids_from_latents(input_chunks[1], requires_aesthetic_score=True),
                        },
                        **kwargs,
                    ).sample

                    noise_pred = torch.cat([base_pred, refiner_pred], dim=0)
                else:
                    noise_pred = self.refiner_unet(
                        latent_model_input,
                        timestep,
                        encoder_hidden_states=text_embeddings.text_embeds[:, :, -1280:],
                        # just use the first second text encoder
                        added_cond_kwargs={
                            "text_embeds": text_embeddings.pooled_embeds,
                            "time_ids": self.get_time_ids_from_latents(latent_model_input,
                                                                       requires_aesthetic_score=True),
                        },
                        **kwargs,
                    ).sample

            else:

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input.to(self.device_torch, self.torch_dtype),
                    timestep,
                    encoder_hidden_states=text_embeddings.text_embeds,
                    added_cond_kwargs=added_cond_kwargs,
                    **kwargs,
                ).sample

            conditional_pred = noise_pred

            if do_classifier_free_guidance:
                # perform guidance
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                conditional_pred = noise_pred_text
                noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                )

                # https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
                if guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

        else:
            with torch.no_grad():
                if do_classifier_free_guidance:
                    # if we are doing classifier free guidance, need to double up
                    latent_model_input = torch.cat([latents] * 2, dim=0)
                    timestep = torch.cat([timestep] * 2)
                else:
                    latent_model_input = latents

                latent_model_input = scale_model_input(latent_model_input, timestep)

                # check if we need to concat timesteps
                if isinstance(timestep, torch.Tensor) and len(timestep.shape) > 1:
                    ts_bs = timestep.shape[0]
                    if ts_bs != latent_model_input.shape[0]:
                        if ts_bs == 1:
                            timestep = torch.cat([timestep] * latent_model_input.shape[0])
                        elif ts_bs * 2 == latent_model_input.shape[0]:
                            timestep = torch.cat([timestep] * 2, dim=0)
                        else:
                            raise ValueError(
                                f"Batch size of latents {latent_model_input.shape[0]} must be the same or half the batch size of timesteps {timestep.shape[0]}")

            # predict the noise residual
            if self.is_pixart:
                VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1)
                batch_size, ch, h, w = list(latents.shape)

                height = h * VAE_SCALE_FACTOR
                width = w * VAE_SCALE_FACTOR

                if self.pipeline.transformer.config.sample_size == 256:
                    aspect_ratio_bin = ASPECT_RATIO_2048_BIN
                elif self.pipeline.transformer.config.sample_size == 128:
                    aspect_ratio_bin = ASPECT_RATIO_1024_BIN
                elif self.pipeline.transformer.config.sample_size == 64:
                    aspect_ratio_bin = ASPECT_RATIO_512_BIN
                elif self.pipeline.transformer.config.sample_size == 32:
                    aspect_ratio_bin = ASPECT_RATIO_256_BIN
                else:
                    raise ValueError(f"Invalid sample size: {self.pipeline.transformer.config.sample_size}")
                orig_height, orig_width = height, width
                height, width = self.pipeline.image_processor.classify_height_width_bin(height, width,
                                                                                        ratios=aspect_ratio_bin)

                added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
                if self.unet.config.sample_size == 128 or (
                        self.vae_scale_factor == 16 and self.unet.config.sample_size == 64):
                    resolution = torch.tensor([height, width]).repeat(batch_size, 1)
                    aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size, 1)
                    resolution = resolution.to(dtype=text_embeddings.text_embeds.dtype, device=self.device_torch)
                    aspect_ratio = aspect_ratio.to(dtype=text_embeddings.text_embeds.dtype, device=self.device_torch)

                    if do_classifier_free_guidance:
                        resolution = torch.cat([resolution, resolution], dim=0)
                        aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)

                    added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}

                noise_pred = self.unet(
                    latent_model_input.to(self.device_torch, self.torch_dtype),
                    encoder_hidden_states=text_embeddings.text_embeds,
                    encoder_attention_mask=text_embeddings.attention_mask,
                    timestep=timestep,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                    **kwargs
                )[0]

                # learned sigma
                if self.unet.config.out_channels // 2 == self.unet.config.in_channels:
                    noise_pred = noise_pred.chunk(2, dim=1)[0]
                else:
                    noise_pred = noise_pred
            else:
                if self.unet.device != self.device_torch:
                    self.unet.to(self.device_torch)
                if self.unet.dtype != self.torch_dtype:
                    self.unet = self.unet.to(dtype=self.torch_dtype)
                if self.is_flux:
                    with torch.no_grad():

                        bs, c, h, w = latent_model_input.shape
                        latent_model_input_packed = rearrange(
                            latent_model_input,
                            "b c (h ph) (w pw) -> b (h w) (c ph pw)",
                            ph=2,
                            pw=2
                        )

                        img_ids = torch.zeros(h // 2, w // 2, 3)
                        img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
                        img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
                        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs).to(self.device_torch)

                        txt_ids = torch.zeros(bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch)

                        # # handle guidance
                        if self.unet.config.guidance_embeds:
                            if isinstance(guidance_scale, list):
                                guidance = torch.tensor(guidance_scale, device=self.device_torch)
                            else:
                                guidance = torch.tensor([guidance_scale], device=self.device_torch)
                                guidance = guidance.expand(latents.shape[0])
                        else:
                            guidance = None

                    cast_dtype = self.unet.dtype
                    # with torch.amp.autocast(device_type='cuda', dtype=cast_dtype):
                    noise_pred = self.unet(
                        hidden_states=latent_model_input_packed.to(self.device_torch, cast_dtype),  # [1, 4096, 64]
                        # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
                        # todo make sure this doesnt change
                        timestep=timestep / 1000,  # timestep is 1000 scale
                        encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, cast_dtype),
                        # [1, 512, 4096]
                        pooled_projections=text_embeddings.pooled_embeds.to(self.device_torch, cast_dtype),  # [1, 768]
                        txt_ids=txt_ids,  # [1, 512, 3]
                        img_ids=img_ids,  # [1, 4096, 3]
                        guidance=guidance,
                        return_dict=False,
                        **kwargs,
                    )[0]

                    if isinstance(noise_pred, QTensor):
                        noise_pred = noise_pred.dequantize()

                    noise_pred = rearrange(
                        noise_pred,
                        "b (h w) (c ph pw) -> b c (h ph) (w pw)",
                        h=latent_model_input.shape[2] // 2,
                        w=latent_model_input.shape[3] // 2,
                        ph=2,
                        pw=2,
                        c=latent_model_input.shape[1],
                    )
                elif self.is_v3:
                    noise_pred = self.unet(
                        hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype),
                        timestep=timestep,
                        encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype),
                        pooled_projections=text_embeddings.pooled_embeds.to(self.device_torch, self.torch_dtype),
                        **kwargs,
                    ).sample
                    if isinstance(noise_pred, QTensor):
                        noise_pred = noise_pred.dequantize()
                elif self.is_auraflow:
                    # aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                    t = torch.tensor([timestep / 1000]).expand(latent_model_input.shape[0])
                    t = t.to(self.device_torch, self.torch_dtype)

                    noise_pred = self.unet(
                        latent_model_input,
                        encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype),
                        timestep=t,
                        return_dict=False,
                    )[0]
                else:
                    noise_pred = self.unet(
                        latent_model_input.to(self.device_torch, self.torch_dtype),
                        timestep=timestep,
                        encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype),
                        **kwargs,
                    ).sample

            conditional_pred = noise_pred

            if do_classifier_free_guidance:
                # perform guidance
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2, dim=0)
                conditional_pred = noise_pred_text
                if detach_unconditional:
                    noise_pred_uncond = noise_pred_uncond.detach()
                noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                )
                if rescale_cfg is not None and rescale_cfg != guidance_scale:
                    with torch.no_grad():
                        # do cfg at the target rescale so we can match it
                        target_pred_mean_std = noise_pred_uncond + rescale_cfg * (
                                noise_pred_text - noise_pred_uncond
                        )
                        target_mean = target_pred_mean_std.mean([1, 2, 3], keepdim=True).detach()
                        target_std = target_pred_mean_std.std([1, 2, 3], keepdim=True).detach()

                        pred_mean = noise_pred.mean([1, 2, 3], keepdim=True).detach()
                        pred_std = noise_pred.std([1, 2, 3], keepdim=True).detach()

                    # match the mean and std
                    noise_pred = (noise_pred - pred_mean) / pred_std
                    noise_pred = (noise_pred * target_std) + target_mean

                # https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
                if guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

        if return_conditional_pred:
            return noise_pred, conditional_pred
        return noise_pred

    def step_scheduler(self, model_input, latent_input, timestep_tensor, noise_scheduler=None):
        if noise_scheduler is None:
            noise_scheduler = self.noise_scheduler
        # // sometimes they are on the wrong device, no idea why
        if isinstance(noise_scheduler, DDPMScheduler) or isinstance(noise_scheduler, LCMScheduler):
            try:
                noise_scheduler.betas = noise_scheduler.betas.to(self.device_torch)
                noise_scheduler.alphas = noise_scheduler.alphas.to(self.device_torch)
                noise_scheduler.alphas_cumprod = noise_scheduler.alphas_cumprod.to(self.device_torch)
            except Exception as e:
                pass

        mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0)
        latent_chunks = torch.chunk(latent_input, latent_input.shape[0], dim=0)
        timestep_chunks = torch.chunk(timestep_tensor, timestep_tensor.shape[0], dim=0)
        out_chunks = []
        if len(timestep_chunks) == 1 and len(mi_chunks) > 1:
            # expand timestep to match
            timestep_chunks = timestep_chunks * len(mi_chunks)

        for idx in range(model_input.shape[0]):
            # Reset it so it is unique for the
            if hasattr(noise_scheduler, '_step_index'):
                noise_scheduler._step_index = None
            if hasattr(noise_scheduler, 'is_scale_input_called'):
                noise_scheduler.is_scale_input_called = True
            out_chunks.append(
                noise_scheduler.step(mi_chunks[idx], timestep_chunks[idx], latent_chunks[idx], return_dict=False)[
                    0]
            )
        return torch.cat(out_chunks, dim=0)

    # ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
    def diffuse_some_steps(
            self,
            latents: torch.FloatTensor,
            text_embeddings: PromptEmbeds,
            total_timesteps: int = 1000,
            start_timesteps=0,
            guidance_scale=1,
            add_time_ids=None,
            bleed_ratio: float = 0.5,
            bleed_latents: torch.FloatTensor = None,
            is_input_scaled=False,
            return_first_prediction=False,
            **kwargs,
    ):
        timesteps_to_run = self.noise_scheduler.timesteps[start_timesteps:total_timesteps]

        first_prediction = None

        for timestep in tqdm(timesteps_to_run, leave=False):
            timestep = timestep.unsqueeze_(0)
            noise_pred, conditional_pred = self.predict_noise(
                latents,
                text_embeddings,
                timestep,
                guidance_scale=guidance_scale,
                add_time_ids=add_time_ids,
                is_input_scaled=is_input_scaled,
                return_conditional_pred=True,
                **kwargs,
            )
            # some schedulers need to run separately, so do that. (euler for example)

            if return_first_prediction and first_prediction is None:
                first_prediction = conditional_pred

            latents = self.step_scheduler(noise_pred, latents, timestep)

            # if not last step, and bleeding, bleed in some latents
            if bleed_latents is not None and timestep != self.noise_scheduler.timesteps[-1]:
                latents = (latents * (1 - bleed_ratio)) + (bleed_latents * bleed_ratio)

            # only skip first scaling
            is_input_scaled = False

        # return latents_steps
        if return_first_prediction:
            return latents, first_prediction
        return latents

    def encode_prompt(
            self,
            prompt,
            prompt2=None,
            num_images_per_prompt=1,
            force_all=False,
            long_prompts=False,
            max_length=None,
            dropout_prob=0.0,
    ) -> PromptEmbeds:
        # sd1.5 embeddings are (bs, 77, 768)
        prompt = prompt
        # if it is not a list, make it one
        if not isinstance(prompt, list):
            prompt = [prompt]

        if prompt2 is not None and not isinstance(prompt2, list):
            prompt2 = [prompt2]
        if self.is_xl:
            # todo make this a config
            # 50% chance to use an encoder anyway even if it is disabled
            # allows the other TE to compensate for the disabled one
            # use_encoder_1 = self.use_text_encoder_1 or force_all or random.random() > 0.5
            # use_encoder_2 = self.use_text_encoder_2 or force_all or random.random() > 0.5
            use_encoder_1 = True
            use_encoder_2 = True

            return PromptEmbeds(
                train_tools.encode_prompts_xl(
                    self.tokenizer,
                    self.text_encoder,
                    prompt,
                    prompt2,
                    num_images_per_prompt=num_images_per_prompt,
                    use_text_encoder_1=use_encoder_1,
                    use_text_encoder_2=use_encoder_2,
                    truncate=not long_prompts,
                    max_length=max_length,
                    dropout_prob=dropout_prob,
                )
            )
        if self.is_v3:
            return PromptEmbeds(
                train_tools.encode_prompts_sd3(
                    self.tokenizer,
                    self.text_encoder,
                    prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    truncate=not long_prompts,
                    max_length=max_length,
                    dropout_prob=dropout_prob,
                    pipeline=self.pipeline,
                )
            )
        elif self.is_pixart:
            embeds, attention_mask = train_tools.encode_prompts_pixart(
                self.tokenizer,
                self.text_encoder,
                prompt,
                truncate=not long_prompts,
                max_length=300 if self.model_config.is_pixart_sigma else 120,
                dropout_prob=dropout_prob
            )
            return PromptEmbeds(
                embeds,
                attention_mask=attention_mask,
            )
        elif self.is_auraflow:
            embeds, attention_mask = train_tools.encode_prompts_auraflow(
                self.tokenizer,
                self.text_encoder,
                prompt,
                truncate=not long_prompts,
                max_length=256,
                dropout_prob=dropout_prob
            )
            return PromptEmbeds(
                embeds,
                attention_mask=attention_mask,  # not used
            )
        elif self.is_flux:
            prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux(
                self.tokenizer,  # list
                self.text_encoder,  # list
                prompt,
                truncate=not long_prompts,
                max_length=512,
                dropout_prob=dropout_prob,
                attn_mask=self.model_config.attn_masking
            )
            pe = PromptEmbeds(
                prompt_embeds
            )
            pe.pooled_embeds = pooled_prompt_embeds
            return pe


        elif isinstance(self.text_encoder, T5EncoderModel):
            embeds, attention_mask = train_tools.encode_prompts_pixart(
                self.tokenizer,
                self.text_encoder,
                prompt,
                truncate=not long_prompts,
                max_length=256,
                dropout_prob=dropout_prob
            )
            
            # just mask the attention mask
            prompt_attention_mask = attention_mask.unsqueeze(-1).expand(embeds.shape)
            embeds = embeds * prompt_attention_mask.to(dtype=embeds.dtype, device=embeds.device)
            return PromptEmbeds(
                embeds,
                
                # do we want attn mask here?
                # attention_mask=attention_mask,
            )
        else:
            return PromptEmbeds(
                train_tools.encode_prompts(
                    self.tokenizer,
                    self.text_encoder,
                    prompt,
                    truncate=not long_prompts,
                    max_length=max_length,
                    dropout_prob=dropout_prob
                )
            )

    @torch.no_grad()
    def encode_images(
            self,
            image_list: List[torch.Tensor],
            device=None,
            dtype=None
    ):
        if device is None:
            device = self.vae_device_torch
        if dtype is None:
            dtype = self.vae_torch_dtype

        latent_list = []
        # Move to vae to device if on cpu
        if self.vae.device == 'cpu':
            self.vae.to(device)
        self.vae.eval()
        self.vae.requires_grad_(False)
        # move to device and dtype
        image_list = [image.to(device, dtype=dtype) for image in image_list]

        VAE_SCALE_FACTOR = 2 ** (len(self.vae.config['block_out_channels']) - 1)

        # resize images if not divisible by 8
        for i in range(len(image_list)):
            image = image_list[i]
            if image.shape[1] % VAE_SCALE_FACTOR != 0 or image.shape[2] % VAE_SCALE_FACTOR != 0:
                image_list[i] = Resize((image.shape[1] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR,
                                        image.shape[2] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR))(image)

        images = torch.stack(image_list)
        if isinstance(self.vae, AutoencoderTiny):
            latents = self.vae.encode(images, return_dict=False)[0]
        else:
            latents = self.vae.encode(images).latent_dist.sample()
        shift = self.vae.config['shift_factor'] if self.vae.config['shift_factor'] is not None else 0

        # flux ref https://github.com/black-forest-labs/flux/blob/c23ae247225daba30fbd56058d247cc1b1fc20a3/src/flux/modules/autoencoder.py#L303
        # z = self.scale_factor * (z - self.shift_factor)
        latents = self.vae.config['scaling_factor'] * (latents - shift)
        latents = latents.to(device, dtype=dtype)

        return latents

    def decode_latents(
            self,
            latents: torch.Tensor,
            device=None,
            dtype=None
    ):
        if device is None:
            device = self.device
        if dtype is None:
            dtype = self.torch_dtype

        # Move to vae to device if on cpu
        if self.vae.device == 'cpu':
            self.vae.to(self.device)
        latents = latents.to(device, dtype=dtype)
        latents = (latents / self.vae.config['scaling_factor']) + self.vae.config['shift_factor']
        images = self.vae.decode(latents).sample
        images = images.to(device, dtype=dtype)

        return images

    def encode_image_prompt_pairs(
            self,
            prompt_list: List[str],
            image_list: List[torch.Tensor],
            device=None,
            dtype=None
    ):
        # todo check image types and expand and rescale as needed
        # device and dtype are for outputs
        if device is None:
            device = self.device
        if dtype is None:
            dtype = self.torch_dtype

        embedding_list = []
        latent_list = []
        # embed the prompts
        for prompt in prompt_list:
            embedding = self.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
            embedding_list.append(embedding)

        return embedding_list, latent_list

    def get_weight_by_name(self, name):
        # weights begin with te{te_num}_ for text encoder
        # weights begin with unet_ for unet_
        if name.startswith('te'):
            key = name[4:]
            # text encoder
            te_num = int(name[2])
            if isinstance(self.text_encoder, list):
                return self.text_encoder[te_num].state_dict()[key]
            else:
                return self.text_encoder.state_dict()[key]
        elif name.startswith('unet'):
            key = name[5:]
            # unet
            return self.unet.state_dict()[key]

        raise ValueError(f"Unknown weight name: {name}")

    def inject_trigger_into_prompt(self, prompt, trigger=None, to_replace_list=None, add_if_not_present=False):
        return inject_trigger_into_prompt(
            prompt,
            trigger=trigger,
            to_replace_list=to_replace_list,
            add_if_not_present=add_if_not_present,
        )

    def state_dict(self, vae=True, text_encoder=True, unet=True):
        state_dict = OrderedDict()
        if vae:
            for k, v in self.vae.state_dict().items():
                new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}"
                state_dict[new_key] = v
        if text_encoder:
            if isinstance(self.text_encoder, list):
                for i, encoder in enumerate(self.text_encoder):
                    for k, v in encoder.state_dict().items():
                        new_key = k if k.startswith(
                            f"{SD_PREFIX_TEXT_ENCODER}{i}_") else f"{SD_PREFIX_TEXT_ENCODER}{i}_{k}"
                        state_dict[new_key] = v
            else:
                for k, v in self.text_encoder.state_dict().items():
                    new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER}_") else f"{SD_PREFIX_TEXT_ENCODER}_{k}"
                    state_dict[new_key] = v
        if unet:
            for k, v in self.unet.state_dict().items():
                new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}"
                state_dict[new_key] = v
        return state_dict

    def named_parameters(self, vae=True, text_encoder=True, unet=True, refiner=False, state_dict_keys=False) -> \
            OrderedDict[
                str, Parameter]:
        named_params: OrderedDict[str, Parameter] = OrderedDict()
        if vae:
            for name, param in self.vae.named_parameters(recurse=True, prefix=f"{SD_PREFIX_VAE}"):
                named_params[name] = param
        if text_encoder:
            if isinstance(self.text_encoder, list):
                for i, encoder in enumerate(self.text_encoder):
                    if self.is_xl and not self.model_config.use_text_encoder_1 and i == 0:
                        # dont add these params
                        continue
                    if self.is_xl and not self.model_config.use_text_encoder_2 and i == 1:
                        # dont add these params
                        continue

                    for name, param in encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}{i}"):
                        named_params[name] = param
            else:
                for name, param in self.text_encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}"):
                    named_params[name] = param
        if unet:
            if self.is_flux:
                # Just train the middle 2 blocks of each transformer block
                # block_list = []
                # num_transformer_blocks = 2
                # start_block = len(self.unet.transformer_blocks) // 2 - (num_transformer_blocks // 2)
                # for i in range(num_transformer_blocks):
                #     block_list.append(self.unet.transformer_blocks[start_block + i])
                #
                # num_single_transformer_blocks = 4
                # start_block = len(self.unet.single_transformer_blocks) // 2 - (num_single_transformer_blocks // 2)
                # for i in range(num_single_transformer_blocks):
                #     block_list.append(self.unet.single_transformer_blocks[start_block + i])
                #
                # for block in block_list:
                #     for name, param in block.named_parameters(recurse=True, prefix=f"{SD_PREFIX_UNET}"):
                #         named_params[name] = param

                # train the guidance embedding
                # if self.unet.config.guidance_embeds:
                #     transformer: FluxTransformer2DModel = self.unet
                #     for name, param in transformer.time_text_embed.named_parameters(recurse=True,
                #                                                                     prefix=f"{SD_PREFIX_UNET}"):
                #         named_params[name] = param

                for name, param in self.unet.transformer_blocks.named_parameters(recurse=True,
                                                                                 prefix=f"{SD_PREFIX_UNET}"):
                    named_params[name] = param
                for name, param in self.unet.single_transformer_blocks.named_parameters(recurse=True,
                                                                                        prefix=f"{SD_PREFIX_UNET}"):
                    named_params[name] = param
            else:
                for name, param in self.unet.named_parameters(recurse=True, prefix=f"{SD_PREFIX_UNET}"):
                    named_params[name] = param

        if refiner:
            for name, param in self.refiner_unet.named_parameters(recurse=True, prefix=f"{SD_PREFIX_REFINER_UNET}"):
                named_params[name] = param

        # convert to state dict keys, jsut replace . with _ on keys
        if state_dict_keys:
            new_named_params = OrderedDict()
            for k, v in named_params.items():
                # replace only the first . with an _
                new_key = k.replace('.', '_', 1)
                new_named_params[new_key] = v
            named_params = new_named_params

        return named_params

    def save_refiner(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16')):

        # load the full refiner since we only train unet
        if self.model_config.refiner_name_or_path is None:
            raise ValueError("Refiner must be specified to save it")
        refiner_config_path = os.path.join(ORIG_CONFIGS_ROOT, 'sd_xl_refiner.yaml')
        # load the refiner model
        dtype = get_torch_dtype(self.dtype)
        model_path = self.model_config._original_refiner_name_or_path
        if not os.path.exists(model_path) or os.path.isdir(model_path):
            # TODO only load unet??
            refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
                model_path,
                dtype=dtype,
                device='cpu',
                # variant="fp16",
                use_safetensors=True,
            )
        else:
            refiner = StableDiffusionXLImg2ImgPipeline.from_single_file(
                model_path,
                dtype=dtype,
                device='cpu',
                torch_dtype=self.torch_dtype,
                original_config_file=refiner_config_path,
            )
        # replace original unet
        refiner.unet = self.refiner_unet
        flush()

        diffusers_state_dict = OrderedDict()
        for k, v in refiner.vae.state_dict().items():
            new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}"
            diffusers_state_dict[new_key] = v
        for k, v in refiner.text_encoder_2.state_dict().items():
            new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER2}_") else f"{SD_PREFIX_TEXT_ENCODER2}_{k}"
            diffusers_state_dict[new_key] = v
        for k, v in refiner.unet.state_dict().items():
            new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}"
            diffusers_state_dict[new_key] = v

        converted_state_dict = get_ldm_state_dict_from_diffusers(
            diffusers_state_dict,
            'sdxl_refiner',
            device='cpu',
            dtype=save_dtype
        )

        # make sure parent folder exists
        os.makedirs(os.path.dirname(output_file), exist_ok=True)
        save_file(converted_state_dict, output_file, metadata=meta)

        if self.config_file is not None:
            output_path_no_ext = os.path.splitext(output_file)[0]
            output_config_path = f"{output_path_no_ext}.yaml"
            shutil.copyfile(self.config_file, output_config_path)

    def save(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16'), logit_scale=None):
        version_string = '1'
        if self.is_v2:
            version_string = '2'
        if self.is_xl:
            version_string = 'sdxl'
        if self.is_ssd:
            # overwrite sdxl because both wil be true here
            version_string = 'ssd'
        if self.is_ssd and self.is_vega:
            version_string = 'vega'
        # if output file does not end in .safetensors, then it is a directory and we are
        # saving in diffusers format
        if not output_file.endswith('.safetensors'):
            # diffusers
            # if self.is_pixart:
            #     self.unet.save_pretrained(
            #         save_directory=output_file,
            #         safe_serialization=True,
            #     )
            # else:
            if self.is_flux:
                # only save the unet
                transformer: FluxTransformer2DModel = self.unet
                transformer.save_pretrained(
                    save_directory=os.path.join(output_file, 'transformer'),
                    safe_serialization=True,
                )
            else:

                self.pipeline.save_pretrained(
                    save_directory=output_file,
                    safe_serialization=True,
                )
            # save out meta config
            meta_path = os.path.join(output_file, 'aitk_meta.yaml')
            with open(meta_path, 'w') as f:
                yaml.dump(meta, f)

        else:
            save_ldm_model_from_diffusers(
                sd=self,
                output_file=output_file,
                meta=meta,
                save_dtype=save_dtype,
                sd_version=version_string,
            )
            if self.config_file is not None:
                output_path_no_ext = os.path.splitext(output_file)[0]
                output_config_path = f"{output_path_no_ext}.yaml"
                shutil.copyfile(self.config_file, output_config_path)

    def prepare_optimizer_params(
            self,
            unet=False,
            text_encoder=False,
            text_encoder_lr=None,
            unet_lr=None,
            refiner_lr=None,
            refiner=False,
            default_lr=1e-6,
    ):
        # todo maybe only get locon ones?
        # not all items are saved, to make it match, we need to match out save mappings
        # and not train anything not mapped. Also add learning rate
        version = 'sd1'
        if self.is_xl:
            version = 'sdxl'
        if self.is_v2:
            version = 'sd2'
        mapping_filename = f"stable_diffusion_{version}.json"
        mapping_path = os.path.join(KEYMAPS_ROOT, mapping_filename)
        with open(mapping_path, 'r') as f:
            mapping = json.load(f)
        ldm_diffusers_keymap = mapping['ldm_diffusers_keymap']

        trainable_parameters = []

        # we use state dict to find params

        if unet:
            named_params = self.named_parameters(vae=False, unet=unet, text_encoder=False, state_dict_keys=True)
            unet_lr = unet_lr if unet_lr is not None else default_lr
            params = []
            if self.is_pixart or self.is_auraflow or self.is_flux:
                for param in named_params.values():
                    if param.requires_grad:
                        params.append(param)
            else:
                for key, diffusers_key in ldm_diffusers_keymap.items():
                    if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
                        if named_params[diffusers_key].requires_grad:
                            params.append(named_params[diffusers_key])
            param_data = {"params": params, "lr": unet_lr}
            trainable_parameters.append(param_data)
            print(f"Found {len(params)} trainable parameter in unet")

        if text_encoder:
            named_params = self.named_parameters(vae=False, unet=False, text_encoder=text_encoder, state_dict_keys=True)
            text_encoder_lr = text_encoder_lr if text_encoder_lr is not None else default_lr
            params = []
            for key, diffusers_key in ldm_diffusers_keymap.items():
                if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
                    if named_params[diffusers_key].requires_grad:
                        params.append(named_params[diffusers_key])
            param_data = {"params": params, "lr": text_encoder_lr}
            trainable_parameters.append(param_data)

            print(f"Found {len(params)} trainable parameter in text encoder")

        if refiner:
            named_params = self.named_parameters(vae=False, unet=False, text_encoder=False, refiner=True,
                                                 state_dict_keys=True)
            refiner_lr = refiner_lr if refiner_lr is not None else default_lr
            params = []
            for key, diffusers_key in ldm_diffusers_keymap.items():
                diffusers_key = f"refiner_{diffusers_key}"
                if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
                    if named_params[diffusers_key].requires_grad:
                        params.append(named_params[diffusers_key])
            param_data = {"params": params, "lr": refiner_lr}
            trainable_parameters.append(param_data)

            print(f"Found {len(params)} trainable parameter in refiner")

        return trainable_parameters

    def save_device_state(self):
        # saves the current device state for all modules
        # this is useful for when we want to alter the state and restore it
        if self.is_pixart or self.is_v3 or self.is_auraflow or self.is_flux:
            unet_has_grad = self.unet.proj_out.weight.requires_grad
        else:
            unet_has_grad = self.unet.conv_in.weight.requires_grad

        self.device_state = {
            **empty_preset,
            'vae': {
                'training': self.vae.training,
                'device': self.vae.device,
            },
            'unet': {
                'training': self.unet.training,
                'device': self.unet.device,
                'requires_grad': unet_has_grad,
            },
        }
        if isinstance(self.text_encoder, list):
            self.device_state['text_encoder']: List[dict] = []
            for encoder in self.text_encoder:
                try:
                    te_has_grad = encoder.text_model.final_layer_norm.weight.requires_grad
                except:
                    te_has_grad = encoder.encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
                self.device_state['text_encoder'].append({
                    'training': encoder.training,
                    'device': encoder.device,
                    # todo there has to be a better way to do this
                    'requires_grad': te_has_grad
                })
        else:
            if isinstance(self.text_encoder, T5EncoderModel) or isinstance(self.text_encoder, UMT5EncoderModel):
                te_has_grad = self.text_encoder.encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
            else:
                te_has_grad = self.text_encoder.text_model.final_layer_norm.weight.requires_grad

            self.device_state['text_encoder'] = {
                'training': self.text_encoder.training,
                'device': self.text_encoder.device,
                'requires_grad': te_has_grad
            }
        if self.adapter is not None:
            if isinstance(self.adapter, IPAdapter):
                requires_grad = self.adapter.image_proj_model.training
                adapter_device = self.unet.device
            elif isinstance(self.adapter, T2IAdapter):
                requires_grad = self.adapter.adapter.conv_in.weight.requires_grad
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, ControlNetModel):
                requires_grad = self.adapter.conv_in.training
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, ClipVisionAdapter):
                requires_grad = self.adapter.embedder.training
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, CustomAdapter):
                requires_grad = self.adapter.training
                adapter_device = self.adapter.device
            elif isinstance(self.adapter, ReferenceAdapter):
                # todo update this!!
                requires_grad = True
                adapter_device = self.adapter.device
            else:
                raise ValueError(f"Unknown adapter type: {type(self.adapter)}")
            self.device_state['adapter'] = {
                'training': self.adapter.training,
                'device': adapter_device,
                'requires_grad': requires_grad,
            }

        if self.refiner_unet is not None:
            self.device_state['refiner_unet'] = {
                'training': self.refiner_unet.training,
                'device': self.refiner_unet.device,
                'requires_grad': self.refiner_unet.conv_in.weight.requires_grad,
            }

    def restore_device_state(self):
        # restores the device state for all modules
        # this is useful for when we want to alter the state and restore it
        if self.device_state is None:
            return
        self.set_device_state(self.device_state)
        self.device_state = None

    def set_device_state(self, state):
        if state['vae']['training']:
            self.vae.train()
        else:
            self.vae.eval()
        self.vae.to(state['vae']['device'])
        if state['unet']['training']:
            self.unet.train()
        else:
            self.unet.eval()
        self.unet.to(state['unet']['device'])
        if state['unet']['requires_grad']:
            self.unet.requires_grad_(True)
        else:
            self.unet.requires_grad_(False)
        if isinstance(self.text_encoder, list):
            for i, encoder in enumerate(self.text_encoder):
                if isinstance(state['text_encoder'], list):
                    if state['text_encoder'][i]['training']:
                        encoder.train()
                    else:
                        encoder.eval()
                    encoder.to(state['text_encoder'][i]['device'])
                    encoder.requires_grad_(state['text_encoder'][i]['requires_grad'])
                else:
                    if state['text_encoder']['training']:
                        encoder.train()
                    else:
                        encoder.eval()
                    encoder.to(state['text_encoder']['device'])
                    encoder.requires_grad_(state['text_encoder']['requires_grad'])
        else:
            if state['text_encoder']['training']:
                self.text_encoder.train()
            else:
                self.text_encoder.eval()
            self.text_encoder.to(state['text_encoder']['device'])
            self.text_encoder.requires_grad_(state['text_encoder']['requires_grad'])

        if self.adapter is not None:
            self.adapter.to(state['adapter']['device'])
            self.adapter.requires_grad_(state['adapter']['requires_grad'])
            if state['adapter']['training']:
                self.adapter.train()
            else:
                self.adapter.eval()

        if self.refiner_unet is not None:
            self.refiner_unet.to(state['refiner_unet']['device'])
            self.refiner_unet.requires_grad_(state['refiner_unet']['requires_grad'])
            if state['refiner_unet']['training']:
                self.refiner_unet.train()
            else:
                self.refiner_unet.eval()
        flush()

    def set_device_state_preset(self, device_state_preset: DeviceStatePreset):
        # sets a preset for device state

        # save current state first
        self.save_device_state()

        active_modules = []
        training_modules = []
        if device_state_preset in ['cache_latents']:
            active_modules = ['vae']
        if device_state_preset in ['cache_clip']:
            active_modules = ['clip']
        if device_state_preset in ['generate']:
            active_modules = ['vae', 'unet', 'text_encoder', 'adapter', 'refiner_unet']

        state = copy.deepcopy(empty_preset)
        # vae
        state['vae'] = {
            'training': 'vae' in training_modules,
            'device': self.vae_device_torch if 'vae' in active_modules else 'cpu',
            'requires_grad': 'vae' in training_modules,
        }

        # unet
        state['unet'] = {
            'training': 'unet' in training_modules,
            'device': self.device_torch if 'unet' in active_modules else 'cpu',
            'requires_grad': 'unet' in training_modules,
        }

        if self.refiner_unet is not None:
            state['refiner_unet'] = {
                'training': 'refiner_unet' in training_modules,
                'device': self.device_torch if 'refiner_unet' in active_modules else 'cpu',
                'requires_grad': 'refiner_unet' in training_modules,
            }

        # text encoder
        if isinstance(self.text_encoder, list):
            state['text_encoder'] = []
            for i, encoder in enumerate(self.text_encoder):
                state['text_encoder'].append({
                    'training': 'text_encoder' in training_modules,
                    'device': self.te_device_torch if 'text_encoder' in active_modules else 'cpu',
                    'requires_grad': 'text_encoder' in training_modules,
                })
        else:
            state['text_encoder'] = {
                'training': 'text_encoder' in training_modules,
                'device': self.te_device_torch if 'text_encoder' in active_modules else 'cpu',
                'requires_grad': 'text_encoder' in training_modules,
            }

        if self.adapter is not None:
            state['adapter'] = {
                'training': 'adapter' in training_modules,
                'device': self.device_torch if 'adapter' in active_modules else 'cpu',
                'requires_grad': 'adapter' in training_modules,
            }

        self.set_device_state(state)

    def text_encoder_to(self, *args, **kwargs):
        if isinstance(self.text_encoder, list):
            for encoder in self.text_encoder:
                encoder.to(*args, **kwargs)
        else:
            self.text_encoder.to(*args, **kwargs)