File size: 11,081 Bytes
c0a15e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77ed278
 
c0a15e9
 
 
9470add
 
d6f8d33
c0a15e9
 
 
 
 
 
 
 
 
 
77ed278
 
c0a15e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48b729
792870e
77ed278
 
 
9470add
77ed278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48b729
9470add
d48b729
9470add
 
 
 
77ed278
c0a15e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48b729
 
c0a15e9
 
9470add
 
 
 
 
 
 
 
 
d48b729
c0a15e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692642f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
import gradio as gr
import shutil
import tempfile
from functools import partial
from optimum.quanto import quantize, qfloat8, freeze
from flux_inference import FluxPipeline

from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
    FOV_to_intrinsics, 
    get_zero123plus_input_cameras,
    get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video

from transformer_flux import FluxTransformer2DModel

# Set up cache path
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

def find_cuda():
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
    if cuda_home and os.path.exists(cuda_home):
        return cuda_home
    nvcc_path = shutil.which('nvcc')
    if nvcc_path:
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path
    return None

cuda_path = find_cuda()
if cuda_path:
    print(f"CUDA installation found at: {cuda_path}")
else:
    print("CUDA installation not found")


device = torch.device('cuda')
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, token=huggingface_token).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1, token=huggingface_token).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
    base_model,
    vae=good_vae,
    transformer=pipe.transformer,
    text_encoder=pipe.text_encoder,
    tokenizer=pipe.tokenizer,
    text_encoder_2=pipe.text_encoder_2,
    tokenizer_2=pipe.tokenizer_2,
    torch_dtype=dtype,
    token=huggingface_token
)

MAX_SEED = 2**32 - 1

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

# Load and fuse LoRA BEFORE quantizing
print('Loading and fusing lora, please wait...')
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.to(device, dtype=torch.bfloat16)

# Load 3D generation models
config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False

# Load diffusion model for 3D generation
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2", 
    custom_pipeline="zero123plus",
    torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing='trailing'
)

# Load custom white-background UNet
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)

pipeline = pipeline.to(device)

# Load reconstruction model
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)

print('Loading Finished!')

def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras

def preprocess(input_image, do_remove_background):
    rembg_session = rembg.new_session() if do_remove_background else None
    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)
    return input_image

ts_cutoff = 2

@spaces.GPU
def generate_flux_image(prompt, height, width, steps, scales, seed):
    return pipe(
        prompt=prompt, 
        width=int(height),
        height=int(width),
        num_inference_steps=int(steps), 
        generator=torch.Generator().manual_seed(int(seed)),
        guidance_scale=float(scales),
        timestep_to_start_cfg=ts_cutoff,
    ).images[0]


@spaces.GPU
def generate_mvs(input_image, sample_steps, sample_seed):
    seed_everything(sample_seed)
    z123_image = pipeline(
        input_image, 
        num_inference_steps=sample_steps
    ).images[0]
    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)
    show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())
    return z123_image, show_image

@spaces.GPU
def make3d(images):
    global model
    if IS_FLEXICUBES:
        model.init_flexicubes_geometry(device, use_renderer=False)
    model = model.eval()

    images = np.asarray(images, dtype=np.float32) / 255.0
    images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)

    input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
    render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)

    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)

    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")

    with torch.no_grad():
        planes = model.forward_planes(images, input_cameras)
        mesh_out = model.extract_mesh(
            planes,
            use_texture_map=False,
            **infer_config,
        )
        vertices, faces, vertex_colors = mesh_out
        vertices = vertices[:, [1, 2, 0]]
        save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, mesh_fpath)
    
    return mesh_fpath, mesh_glb_fpath

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        <div style="text-align: center; max-width: 650px; margin: 0 auto;">
            <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem;">Flux Image to 3D Model Generator</h1>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Your Image Description",
                placeholder="E.g., A serene landscape with mountains and a lake at sunset",
                lines=3
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Group():
                    with gr.Row():
                        height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
                        width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
                    
                    with gr.Row():
                        steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
                        scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
                    
                    seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
            
            generate_btn = gr.Button("Generate 3D Model", variant="primary")

        with gr.Column(scale=4):
            flux_output = gr.Image(label="Generated Flux Image")
            mv_show_images = gr.Image(label="Generated Multi-views")
            with gr.Row():
                with gr.Tab("OBJ"):
                    output_model_obj = gr.Model3D(label="Output Model (OBJ Format)")
                with gr.Tab("GLB"):
                    output_model_glb = gr.Model3D(label="Output Model (GLB Format)")

    mv_images = gr.State()

    def process_pipeline(prompt, height, width, steps, scales, seed):
        flux_image = generate_flux_image(prompt, height, width, steps, scales, seed)
        processed_image = preprocess(flux_image, do_remove_background=True)
        mv_images, show_image = generate_mvs(processed_image, steps, seed)
        obj_path, glb_path = make3d(mv_images)
        return flux_image, show_image, obj_path, glb_path

    generate_btn.click(
        fn=process_pipeline,
        inputs=[prompt, height, width, steps, scales, seed],
        outputs=[flux_output, mv_show_images, output_model_obj, output_model_glb]
    )

if __name__ == "__main__":
    demo.launch()