Spaces:
Sleeping
Sleeping
File size: 16,033 Bytes
2dddb52 b6d3fe5 2dddb52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# Code is based on ReNoise https://github.com/garibida/ReNoise-Inversion
import torch
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from diffusers import (
StableDiffusionXLImg2ImgPipeline,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
StableDiffusionXLPipelineOutput,
retrieve_timesteps,
PipelineImageInput
)
from src.eunms import Epsilon_Update_Type
def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt):
"""
let a = alpha_t, b = alpha_{t - 1}
We have a > b,
x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1})
From https://arxiv.org/pdf/2105.05233.pdf, section F.
"""
a, b = alpha_t, alpha_tm1
sa = a ** 0.5
sb = b ** 0.5
return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt)
class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline):
# @torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
strength: float = 0.3,
num_inversion_steps: int = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
aesthetic_score: float = 6.0,
negative_aesthetic_score: float = 2.5,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
num_inference_steps: int = 50,
inv_hp=None,
**kwargs,
):
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
strength,
num_inversion_steps,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
denoising_start_fr = 1.0 - denoising_start
denoising_start = denoising_start
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._denoising_start = denoising_start
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# 4. Preprocess image
image = self.image_processor.preprocess(image)
# 5. Prepare timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps)
timesteps_num_inference_steps, num_inference_steps = retrieve_timesteps(self.scheduler_inference,
num_inference_steps, device, None)
timesteps, num_inversion_steps = self.get_timesteps(
num_inversion_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
)
# latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# add_noise = True if self.denoising_start is None else False
# 6. Prepare latent variables
with torch.no_grad():
latents = self.prepare_latents(
image,
None,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
False,
)
# 7. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
height, width = latents.shape[-2:]
height = height * self.vae_scale_factor
width = width * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 8. Prepare added time ids & embeddings
if negative_original_size is None:
negative_original_size = original_size
if negative_target_size is None:
negative_target_size = target_size
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device)
if ip_adapter_image is not None:
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
image_embeds = image_embeds.to(device)
# 9. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inversion_steps * self.scheduler.order, 0)
prev_timestep = None
self._num_timesteps = len(timesteps)
self.prev_z = torch.clone(latents)
self.prev_z4 = torch.clone(latents)
self.z_0 = torch.clone(latents)
g_cpu = torch.Generator().manual_seed(7865)
self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype)
# Friendly inversion params
timesteps_for = reversed(timesteps)
noise = randn_tensor(latents.shape, generator=g_cpu, device=latents.device, dtype=latents.dtype)
#latents = latents
z_T = latents.clone()
all_latents = [latents.clone()]
with self.progress_bar(total=num_inversion_steps) as progress_bar:
for i, t in enumerate(timesteps_for):
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
if ip_adapter_image is not None:
added_cond_kwargs["image_embeds"] = image_embeds
z_tp1 = self.inversion_step(latents,
t,
prompt_embeds,
added_cond_kwargs,
prev_timestep=prev_timestep,
inv_hp=inv_hp,
z_0=self.z_0)
prev_timestep = t
latents = z_tp1
all_latents.append(latents.clone())
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
image = latents
# Offload all models
self.maybe_free_model_hooks()
return StableDiffusionXLPipelineOutput(images=image), all_latents
def get_timestamp_dist(self, z_0, timesteps):
timesteps = timesteps.to(z_0.device)
if "cuda" in str(z_0.device):
sigma = self.scheduler.sigmas.cuda()[:-1][self.scheduler.timesteps == timesteps]
else:
sigma = self.scheduler.sigmas[:-1][self.scheduler.timesteps == timesteps]
z_0 = z_0.reshape(-1, 1)
def gaussian_pdf(x):
shape = x.shape
x = x.reshape(-1, 1)
all_probs = - 0.5 * torch.pow(((x - z_0) / sigma), 2)
return all_probs.reshape(shape)
return gaussian_pdf
# @torch.no_grad()
def inversion_step(
self,
z_t: torch.tensor,
t: torch.tensor,
prompt_embeds,
added_cond_kwargs,
prev_timestep: Optional[torch.tensor] = None,
inv_hp=None,
z_0=None,
) -> torch.tensor:
n_iters, alpha, lr = inv_hp
latent = z_t
best_latent = None
best_score = torch.inf
curr_dist = self.get_timestamp_dist(z_0, t)
for i in range(n_iters):
latent.requires_grad = True
noise_pred = self.unet_pass(latent, t, prompt_embeds, added_cond_kwargs)
next_latent = self.backward_step(noise_pred, t, z_t, prev_timestep)
f_x = (next_latent - latent).abs() - alpha * curr_dist(next_latent)
score = f_x.mean()
if score < best_score:
best_score = score
best_latent = next_latent.detach()
f_x.sum().backward()
latent = latent - lr * (f_x / latent.grad)
latent.grad = None
latent._grad_fn = None
# if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE:
# noise_pred = self.unet_pass(best_latent, t, prompt_embeds, added_cond_kwargs)
# self.scheduler.step_and_update_noise(noise_pred, t, best_latent, z_t, return_dict=False,
# update_epsilon_type=self.cfg.update_epsilon_type)
return best_latent
@torch.no_grad()
def unet_pass(self, z_t, t, prompt_embeds, added_cond_kwargs):
latent_model_input = torch.cat([z_t] * 2) if self.do_classifier_free_guidance else z_t
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
return self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
@torch.no_grad()
def backward_step(self, nosie_pred, t, z_t, prev_timestep):
extra_step_kwargs = {}
return self.scheduler.inv_step(nosie_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach()
|