Spaces:
Running
on
A10G
Running
on
A10G
Upload 4 files
Browse files- RealTimeEditingNotebook.ipynb +0 -0
- src/config.py +17 -0
- src/euler_scheduler.py +584 -0
- src/sdxl_inversion_pipeline.py +375 -0
RealTimeEditingNotebook.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/config.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code is based on ReNoise https://github.com/garibida/ReNoise-Inversion
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class RunConfig:
|
8 |
+
num_inference_steps: int = 4
|
9 |
+
|
10 |
+
num_inversion_steps: int = 100
|
11 |
+
|
12 |
+
guidance_scale: float = 0.0
|
13 |
+
|
14 |
+
inversion_max_step: float = 1.0
|
15 |
+
|
16 |
+
def __post_init__(self):
|
17 |
+
pass
|
src/euler_scheduler.py
ADDED
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code is based on ReNoise https://github.com/garibida/ReNoise-Inversion
|
2 |
+
|
3 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
4 |
+
from diffusers.utils import BaseOutput
|
5 |
+
import torch
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from src.eunms import Epsilon_Update_Type
|
10 |
+
|
11 |
+
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
|
12 |
+
"""
|
13 |
+
Output class for the scheduler's `step` function output.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
17 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
18 |
+
denoising loop.
|
19 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
20 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
21 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
22 |
+
"""
|
23 |
+
|
24 |
+
prev_sample: torch.FloatTensor
|
25 |
+
pred_original_sample: Optional[torch.FloatTensor] = None
|
26 |
+
|
27 |
+
class MyEulerAncestralDiscreteScheduler(EulerAncestralDiscreteScheduler):
|
28 |
+
def set_noise_list(self, noise_list):
|
29 |
+
self.noise_list = noise_list
|
30 |
+
|
31 |
+
def get_noise_to_remove(self):
|
32 |
+
sigma_from = self.sigmas[self.step_index]
|
33 |
+
sigma_to = self.sigmas[self.step_index + 1]
|
34 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
35 |
+
|
36 |
+
return self.noise_list[self.step_index] * sigma_up\
|
37 |
+
|
38 |
+
def scale_model_input(
|
39 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
40 |
+
) -> torch.FloatTensor:
|
41 |
+
"""
|
42 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
43 |
+
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
sample (`torch.FloatTensor`):
|
47 |
+
The input sample.
|
48 |
+
timestep (`int`, *optional*):
|
49 |
+
The current timestep in the diffusion chain.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
`torch.FloatTensor`:
|
53 |
+
A scaled input sample.
|
54 |
+
"""
|
55 |
+
|
56 |
+
self._init_step_index(timestep.view((1)))
|
57 |
+
return EulerAncestralDiscreteScheduler.scale_model_input(self, sample, timestep)
|
58 |
+
|
59 |
+
|
60 |
+
def step(
|
61 |
+
self,
|
62 |
+
model_output: torch.FloatTensor,
|
63 |
+
timestep: Union[float, torch.FloatTensor],
|
64 |
+
sample: torch.FloatTensor,
|
65 |
+
generator: Optional[torch.Generator] = None,
|
66 |
+
return_dict: bool = True,
|
67 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
68 |
+
"""
|
69 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
70 |
+
process from the learned model outputs (most often the predicted noise).
|
71 |
+
|
72 |
+
Args:
|
73 |
+
model_output (`torch.FloatTensor`):
|
74 |
+
The direct output from learned diffusion model.
|
75 |
+
timestep (`float`):
|
76 |
+
The current discrete timestep in the diffusion chain.
|
77 |
+
sample (`torch.FloatTensor`):
|
78 |
+
A current instance of a sample created by the diffusion process.
|
79 |
+
generator (`torch.Generator`, *optional*):
|
80 |
+
A random number generator.
|
81 |
+
return_dict (`bool`):
|
82 |
+
Whether or not to return a
|
83 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
87 |
+
If return_dict is `True`,
|
88 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
89 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
90 |
+
|
91 |
+
"""
|
92 |
+
|
93 |
+
if (
|
94 |
+
isinstance(timestep, int)
|
95 |
+
or isinstance(timestep, torch.IntTensor)
|
96 |
+
or isinstance(timestep, torch.LongTensor)
|
97 |
+
):
|
98 |
+
raise ValueError(
|
99 |
+
(
|
100 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
101 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
102 |
+
" one of the `scheduler.timesteps` as a timestep."
|
103 |
+
),
|
104 |
+
)
|
105 |
+
|
106 |
+
if not self.is_scale_input_called:
|
107 |
+
logger.warning(
|
108 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
109 |
+
"See `StableDiffusionPipeline` for a usage example."
|
110 |
+
)
|
111 |
+
|
112 |
+
self._init_step_index(timestep.view((1)))
|
113 |
+
|
114 |
+
sigma = self.sigmas[self.step_index]
|
115 |
+
|
116 |
+
# Upcast to avoid precision issues when computing prev_sample
|
117 |
+
sample = sample.to(torch.float32)
|
118 |
+
|
119 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
120 |
+
if self.config.prediction_type == "epsilon":
|
121 |
+
pred_original_sample = sample - sigma * model_output
|
122 |
+
elif self.config.prediction_type == "v_prediction":
|
123 |
+
# * c_out + input * c_skip
|
124 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
125 |
+
elif self.config.prediction_type == "sample":
|
126 |
+
raise NotImplementedError("prediction_type not implemented yet: sample")
|
127 |
+
else:
|
128 |
+
raise ValueError(
|
129 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
130 |
+
)
|
131 |
+
|
132 |
+
sigma_from = self.sigmas[self.step_index]
|
133 |
+
sigma_to = self.sigmas[self.step_index + 1]
|
134 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
135 |
+
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
136 |
+
|
137 |
+
# 2. Convert to an ODE derivative
|
138 |
+
# derivative = (sample - pred_original_sample) / sigma
|
139 |
+
derivative = model_output
|
140 |
+
|
141 |
+
dt = sigma_down - sigma
|
142 |
+
|
143 |
+
prev_sample = sample + derivative * dt
|
144 |
+
|
145 |
+
device = model_output.device
|
146 |
+
# noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
147 |
+
# prev_sample = prev_sample + noise * sigma_up
|
148 |
+
|
149 |
+
prev_sample = prev_sample + self.noise_list[self.step_index] * sigma_up
|
150 |
+
|
151 |
+
# Cast sample back to model compatible dtype
|
152 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
153 |
+
|
154 |
+
# upon completion increase step index by one
|
155 |
+
self._step_index += 1
|
156 |
+
|
157 |
+
if not return_dict:
|
158 |
+
return (prev_sample,)
|
159 |
+
|
160 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
161 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
162 |
+
)
|
163 |
+
|
164 |
+
def step_and_update_noise(
|
165 |
+
self,
|
166 |
+
model_output: torch.FloatTensor,
|
167 |
+
timestep: Union[float, torch.FloatTensor],
|
168 |
+
sample: torch.FloatTensor,
|
169 |
+
expected_prev_sample: torch.FloatTensor,
|
170 |
+
update_epsilon_type=Epsilon_Update_Type.OVERRIDE,
|
171 |
+
generator: Optional[torch.Generator] = None,
|
172 |
+
return_dict: bool = True,
|
173 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
174 |
+
"""
|
175 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
176 |
+
process from the learned model outputs (most often the predicted noise).
|
177 |
+
|
178 |
+
Args:
|
179 |
+
model_output (`torch.FloatTensor`):
|
180 |
+
The direct output from learned diffusion model.
|
181 |
+
timestep (`float`):
|
182 |
+
The current discrete timestep in the diffusion chain.
|
183 |
+
sample (`torch.FloatTensor`):
|
184 |
+
A current instance of a sample created by the diffusion process.
|
185 |
+
generator (`torch.Generator`, *optional*):
|
186 |
+
A random number generator.
|
187 |
+
return_dict (`bool`):
|
188 |
+
Whether or not to return a
|
189 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
190 |
+
|
191 |
+
Returns:
|
192 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
193 |
+
If return_dict is `True`,
|
194 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
195 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
196 |
+
|
197 |
+
"""
|
198 |
+
|
199 |
+
if (
|
200 |
+
isinstance(timestep, int)
|
201 |
+
or isinstance(timestep, torch.IntTensor)
|
202 |
+
or isinstance(timestep, torch.LongTensor)
|
203 |
+
):
|
204 |
+
raise ValueError(
|
205 |
+
(
|
206 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
207 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
208 |
+
" one of the `scheduler.timesteps` as a timestep."
|
209 |
+
),
|
210 |
+
)
|
211 |
+
|
212 |
+
if not self.is_scale_input_called:
|
213 |
+
logger.warning(
|
214 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
215 |
+
"See `StableDiffusionPipeline` for a usage example."
|
216 |
+
)
|
217 |
+
|
218 |
+
self._init_step_index(timestep.view((1)))
|
219 |
+
|
220 |
+
sigma = self.sigmas[self.step_index]
|
221 |
+
|
222 |
+
# Upcast to avoid precision issues when computing prev_sample
|
223 |
+
sample = sample.to(torch.float32)
|
224 |
+
|
225 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
226 |
+
if self.config.prediction_type == "epsilon":
|
227 |
+
pred_original_sample = sample - sigma * model_output
|
228 |
+
elif self.config.prediction_type == "v_prediction":
|
229 |
+
# * c_out + input * c_skip
|
230 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
231 |
+
elif self.config.prediction_type == "sample":
|
232 |
+
raise NotImplementedError("prediction_type not implemented yet: sample")
|
233 |
+
else:
|
234 |
+
raise ValueError(
|
235 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
236 |
+
)
|
237 |
+
|
238 |
+
sigma_from = self.sigmas[self.step_index]
|
239 |
+
sigma_to = self.sigmas[self.step_index + 1]
|
240 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
241 |
+
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
242 |
+
|
243 |
+
# 2. Convert to an ODE derivative
|
244 |
+
# derivative = (sample - pred_original_sample) / sigma
|
245 |
+
derivative = model_output
|
246 |
+
|
247 |
+
dt = sigma_down - sigma
|
248 |
+
|
249 |
+
prev_sample = sample + derivative * dt
|
250 |
+
|
251 |
+
device = model_output.device
|
252 |
+
# noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
253 |
+
# prev_sample = prev_sample + noise * sigma_up
|
254 |
+
|
255 |
+
if sigma_up > 0:
|
256 |
+
req_noise = (expected_prev_sample - prev_sample) / sigma_up
|
257 |
+
if update_epsilon_type == Epsilon_Update_Type.OVERRIDE:
|
258 |
+
self.noise_list[self.step_index] = req_noise
|
259 |
+
else:
|
260 |
+
for i in range(10):
|
261 |
+
n = torch.autograd.Variable(self.noise_list[self.step_index].detach().clone(), requires_grad=True)
|
262 |
+
loss = torch.norm(n - req_noise.detach())
|
263 |
+
loss.backward()
|
264 |
+
self.noise_list[self.step_index] -= n.grad.detach() * 1.8
|
265 |
+
|
266 |
+
|
267 |
+
prev_sample = prev_sample + self.noise_list[self.step_index] * sigma_up
|
268 |
+
|
269 |
+
# Cast sample back to model compatible dtype
|
270 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
271 |
+
|
272 |
+
# upon completion increase step index by one
|
273 |
+
self._step_index += 1
|
274 |
+
|
275 |
+
if not return_dict:
|
276 |
+
return (prev_sample,)
|
277 |
+
|
278 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
279 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
280 |
+
)
|
281 |
+
|
282 |
+
def inv_step(
|
283 |
+
self,
|
284 |
+
model_output: torch.FloatTensor,
|
285 |
+
timestep: Union[float, torch.FloatTensor],
|
286 |
+
sample: torch.FloatTensor,
|
287 |
+
generator: Optional[torch.Generator] = None,
|
288 |
+
return_dict: bool = True,
|
289 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
290 |
+
"""
|
291 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
292 |
+
process from the learned model outputs (most often the predicted noise).
|
293 |
+
|
294 |
+
Args:
|
295 |
+
model_output (`torch.FloatTensor`):
|
296 |
+
The direct output from learned diffusion model.
|
297 |
+
timestep (`float`):
|
298 |
+
The current discrete timestep in the diffusion chain.
|
299 |
+
sample (`torch.FloatTensor`):
|
300 |
+
A current instance of a sample created by the diffusion process.
|
301 |
+
generator (`torch.Generator`, *optional*):
|
302 |
+
A random number generator.
|
303 |
+
return_dict (`bool`):
|
304 |
+
Whether or not to return a
|
305 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
306 |
+
|
307 |
+
Returns:
|
308 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
309 |
+
If return_dict is `True`,
|
310 |
+
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
311 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
312 |
+
|
313 |
+
"""
|
314 |
+
|
315 |
+
if (
|
316 |
+
isinstance(timestep, int)
|
317 |
+
or isinstance(timestep, torch.IntTensor)
|
318 |
+
or isinstance(timestep, torch.LongTensor)
|
319 |
+
):
|
320 |
+
raise ValueError(
|
321 |
+
(
|
322 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
323 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
324 |
+
" one of the `scheduler.timesteps` as a timestep."
|
325 |
+
),
|
326 |
+
)
|
327 |
+
|
328 |
+
if not self.is_scale_input_called:
|
329 |
+
logger.warning(
|
330 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
331 |
+
"See `StableDiffusionPipeline` for a usage example."
|
332 |
+
)
|
333 |
+
|
334 |
+
self._init_step_index(timestep.view((1)))
|
335 |
+
|
336 |
+
sigma = self.sigmas[self.step_index]
|
337 |
+
|
338 |
+
# Upcast to avoid precision issues when computing prev_sample
|
339 |
+
sample = sample.to(torch.float32)
|
340 |
+
|
341 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
342 |
+
if self.config.prediction_type == "epsilon":
|
343 |
+
pred_original_sample = sample - sigma * model_output
|
344 |
+
elif self.config.prediction_type == "v_prediction":
|
345 |
+
# * c_out + input * c_skip
|
346 |
+
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
347 |
+
elif self.config.prediction_type == "sample":
|
348 |
+
raise NotImplementedError("prediction_type not implemented yet: sample")
|
349 |
+
else:
|
350 |
+
raise ValueError(
|
351 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
352 |
+
)
|
353 |
+
|
354 |
+
sigma_from = self.sigmas[self.step_index]
|
355 |
+
sigma_to = self.sigmas[self.step_index+1]
|
356 |
+
# sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
357 |
+
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2).abs() / sigma_from**2) ** 0.5
|
358 |
+
# sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
359 |
+
sigma_down = sigma_to**2 / sigma_from
|
360 |
+
|
361 |
+
# 2. Convert to an ODE derivative
|
362 |
+
# derivative = (sample - pred_original_sample) / sigma
|
363 |
+
derivative = model_output
|
364 |
+
|
365 |
+
dt = sigma_down - sigma
|
366 |
+
# dt = sigma_down - sigma_from
|
367 |
+
|
368 |
+
prev_sample = sample - derivative * dt
|
369 |
+
|
370 |
+
device = model_output.device
|
371 |
+
# noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
372 |
+
# prev_sample = prev_sample + noise * sigma_up
|
373 |
+
|
374 |
+
prev_sample = prev_sample - self.noise_list[self.step_index] * sigma_up
|
375 |
+
|
376 |
+
# Cast sample back to model compatible dtype
|
377 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
378 |
+
|
379 |
+
# upon completion increase step index by one
|
380 |
+
self._step_index += 1
|
381 |
+
|
382 |
+
if not return_dict:
|
383 |
+
return (prev_sample,)
|
384 |
+
|
385 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
386 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
387 |
+
)
|
388 |
+
|
389 |
+
def get_all_sigmas(self) -> torch.FloatTensor:
|
390 |
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
391 |
+
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
|
392 |
+
return torch.from_numpy(sigmas)
|
393 |
+
|
394 |
+
def add_noise_off_schedule(
|
395 |
+
self,
|
396 |
+
original_samples: torch.FloatTensor,
|
397 |
+
noise: torch.FloatTensor,
|
398 |
+
timesteps: torch.FloatTensor,
|
399 |
+
) -> torch.FloatTensor:
|
400 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
401 |
+
sigmas = self.get_all_sigmas()
|
402 |
+
sigmas = sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
403 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
404 |
+
# mps does not support float64
|
405 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
406 |
+
else:
|
407 |
+
timesteps = timesteps.to(original_samples.device)
|
408 |
+
|
409 |
+
step_indices = 1000 - int(timesteps.item())
|
410 |
+
|
411 |
+
sigma = sigmas[step_indices].flatten()
|
412 |
+
while len(sigma.shape) < len(original_samples.shape):
|
413 |
+
sigma = sigma.unsqueeze(-1)
|
414 |
+
|
415 |
+
noisy_samples = original_samples + noise * sigma
|
416 |
+
return noisy_samples
|
417 |
+
|
418 |
+
# def update_noise_for_friendly_inversion(
|
419 |
+
# self,
|
420 |
+
# model_output: torch.FloatTensor,
|
421 |
+
# timestep: Union[float, torch.FloatTensor],
|
422 |
+
# z_t: torch.FloatTensor,
|
423 |
+
# z_tp1: torch.FloatTensor,
|
424 |
+
# return_dict: bool = True,
|
425 |
+
# ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
426 |
+
# if (
|
427 |
+
# isinstance(timestep, int)
|
428 |
+
# or isinstance(timestep, torch.IntTensor)
|
429 |
+
# or isinstance(timestep, torch.LongTensor)
|
430 |
+
# ):
|
431 |
+
# raise ValueError(
|
432 |
+
# (
|
433 |
+
# "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
434 |
+
# " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
435 |
+
# " one of the `scheduler.timesteps` as a timestep."
|
436 |
+
# ),
|
437 |
+
# )
|
438 |
+
|
439 |
+
# if not self.is_scale_input_called:
|
440 |
+
# logger.warning(
|
441 |
+
# "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
442 |
+
# "See `StableDiffusionPipeline` for a usage example."
|
443 |
+
# )
|
444 |
+
|
445 |
+
# self._init_step_index(timestep.view((1)))
|
446 |
+
|
447 |
+
# sigma = self.sigmas[self.step_index]
|
448 |
+
|
449 |
+
# sigma_from = self.sigmas[self.step_index]
|
450 |
+
# sigma_to = self.sigmas[self.step_index+1]
|
451 |
+
# # sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
452 |
+
# sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2).abs() / sigma_from**2) ** 0.5
|
453 |
+
# # sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
454 |
+
# sigma_down = sigma_to**2 / sigma_from
|
455 |
+
|
456 |
+
# # 2. Conv = (sample - pred_original_sample) / sigma
|
457 |
+
# derivative = model_output
|
458 |
+
|
459 |
+
# dt = sigma_down - sigma
|
460 |
+
# # dt = sigma_down - sigma_from
|
461 |
+
|
462 |
+
# prev_sample = z_t - derivative * dt
|
463 |
+
|
464 |
+
# if sigma_up > 0:
|
465 |
+
# self.noise_list[self.step_index] = (prev_sample - z_tp1) / sigma_up
|
466 |
+
|
467 |
+
# prev_sample = prev_sample - self.noise_list[self.step_index] * sigma_up
|
468 |
+
|
469 |
+
|
470 |
+
# if not return_dict:
|
471 |
+
# return (prev_sample,)
|
472 |
+
|
473 |
+
# return EulerAncestralDiscreteSchedulerOutput(
|
474 |
+
# prev_sample=prev_sample, pred_original_sample=None
|
475 |
+
# )
|
476 |
+
|
477 |
+
|
478 |
+
# def step_friendly_inversion(
|
479 |
+
# self,
|
480 |
+
# model_output: torch.FloatTensor,
|
481 |
+
# timestep: Union[float, torch.FloatTensor],
|
482 |
+
# sample: torch.FloatTensor,
|
483 |
+
# generator: Optional[torch.Generator] = None,
|
484 |
+
# return_dict: bool = True,
|
485 |
+
# expected_next_sample: torch.FloatTensor = None,
|
486 |
+
# ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
487 |
+
# """
|
488 |
+
# Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
489 |
+
# process from the learned model outputs (most often the predicted noise).
|
490 |
+
|
491 |
+
# Args:
|
492 |
+
# model_output (`torch.FloatTensor`):
|
493 |
+
# The direct output from learned diffusion model.
|
494 |
+
# timestep (`float`):
|
495 |
+
# The current discrete timestep in the diffusion chain.
|
496 |
+
# sample (`torch.FloatTensor`):
|
497 |
+
# A current instance of a sample created by the diffusion process.
|
498 |
+
# generator (`torch.Generator`, *optional*):
|
499 |
+
# A random number generator.
|
500 |
+
# return_dict (`bool`):
|
501 |
+
# Whether or not to return a
|
502 |
+
# [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
|
503 |
+
|
504 |
+
# Returns:
|
505 |
+
# [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
506 |
+
# If return_dict is `True`,
|
507 |
+
# [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
|
508 |
+
# otherwise a tuple is returned where the first element is the sample tensor.
|
509 |
+
|
510 |
+
# """
|
511 |
+
|
512 |
+
# if (
|
513 |
+
# isinstance(timestep, int)
|
514 |
+
# or isinstance(timestep, torch.IntTensor)
|
515 |
+
# or isinstance(timestep, torch.LongTensor)
|
516 |
+
# ):
|
517 |
+
# raise ValueError(
|
518 |
+
# (
|
519 |
+
# "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
520 |
+
# " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
521 |
+
# " one of the `scheduler.timesteps` as a timestep."
|
522 |
+
# ),
|
523 |
+
# )
|
524 |
+
|
525 |
+
# if not self.is_scale_input_called:
|
526 |
+
# logger.warning(
|
527 |
+
# "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
528 |
+
# "See `StableDiffusionPipeline` for a usage example."
|
529 |
+
# )
|
530 |
+
|
531 |
+
# self._init_step_index(timestep.view((1)))
|
532 |
+
|
533 |
+
# sigma = self.sigmas[self.step_index]
|
534 |
+
|
535 |
+
# # Upcast to avoid precision issues when computing prev_sample
|
536 |
+
# sample = sample.to(torch.float32)
|
537 |
+
|
538 |
+
# # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
539 |
+
# if self.config.prediction_type == "epsilon":
|
540 |
+
# pred_original_sample = sample - sigma * model_output
|
541 |
+
# elif self.config.prediction_type == "v_prediction":
|
542 |
+
# # * c_out + input * c_skip
|
543 |
+
# pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
544 |
+
# elif self.config.prediction_type == "sample":
|
545 |
+
# raise NotImplementedError("prediction_type not implemented yet: sample")
|
546 |
+
# else:
|
547 |
+
# raise ValueError(
|
548 |
+
# f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
549 |
+
# )
|
550 |
+
|
551 |
+
# sigma_from = self.sigmas[self.step_index]
|
552 |
+
# sigma_to = self.sigmas[self.step_index + 1]
|
553 |
+
# sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
|
554 |
+
# sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
555 |
+
|
556 |
+
# # 2. Convert to an ODE derivative
|
557 |
+
# # derivative = (sample - pred_original_sample) / sigma
|
558 |
+
# derivative = model_output
|
559 |
+
|
560 |
+
# dt = sigma_down - sigma
|
561 |
+
|
562 |
+
# prev_sample = sample + derivative * dt
|
563 |
+
|
564 |
+
# device = model_output.device
|
565 |
+
# # noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
|
566 |
+
# # prev_sample = prev_sample + noise * sigma_up
|
567 |
+
|
568 |
+
# if sigma_up > 0:
|
569 |
+
# self.noise_list[self.step_index] = (expected_next_sample - prev_sample) / sigma_up
|
570 |
+
|
571 |
+
# prev_sample = prev_sample + self.noise_list[self.step_index] * sigma_up
|
572 |
+
|
573 |
+
# # Cast sample back to model compatible dtype
|
574 |
+
# prev_sample = prev_sample.to(model_output.dtype)
|
575 |
+
|
576 |
+
# # upon completion increase step index by one
|
577 |
+
# self._step_index += 1
|
578 |
+
|
579 |
+
# if not return_dict:
|
580 |
+
# return (prev_sample,)
|
581 |
+
|
582 |
+
# return EulerAncestralDiscreteSchedulerOutput(
|
583 |
+
# prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
584 |
+
# )
|
src/sdxl_inversion_pipeline.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code is based on ReNoise https://github.com/garibida/ReNoise-Inversion
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
from diffusers import (
|
7 |
+
StableDiffusionXLImg2ImgPipeline,
|
8 |
+
)
|
9 |
+
from diffusers.utils.torch_utils import randn_tensor
|
10 |
+
|
11 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
|
12 |
+
StableDiffusionXLPipelineOutput,
|
13 |
+
retrieve_timesteps,
|
14 |
+
PipelineImageInput
|
15 |
+
)
|
16 |
+
|
17 |
+
from src.eunms import Epsilon_Update_Type
|
18 |
+
|
19 |
+
|
20 |
+
def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt):
|
21 |
+
"""
|
22 |
+
let a = alpha_t, b = alpha_{t - 1}
|
23 |
+
We have a > b,
|
24 |
+
x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1})
|
25 |
+
From https://arxiv.org/pdf/2105.05233.pdf, section F.
|
26 |
+
"""
|
27 |
+
|
28 |
+
a, b = alpha_t, alpha_tm1
|
29 |
+
sa = a ** 0.5
|
30 |
+
sb = b ** 0.5
|
31 |
+
|
32 |
+
return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt)
|
33 |
+
|
34 |
+
|
35 |
+
class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline):
|
36 |
+
# @torch.no_grad()
|
37 |
+
def __call__(
|
38 |
+
self,
|
39 |
+
prompt: Union[str, List[str]] = None,
|
40 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
41 |
+
image: PipelineImageInput = None,
|
42 |
+
strength: float = 0.3,
|
43 |
+
num_inversion_steps: int = 50,
|
44 |
+
timesteps: List[int] = None,
|
45 |
+
denoising_start: Optional[float] = None,
|
46 |
+
denoising_end: Optional[float] = None,
|
47 |
+
guidance_scale: float = 1.0,
|
48 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
49 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
50 |
+
num_images_per_prompt: Optional[int] = 1,
|
51 |
+
eta: float = 0.0,
|
52 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
53 |
+
latents: Optional[torch.FloatTensor] = None,
|
54 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
55 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
56 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
59 |
+
output_type: Optional[str] = "pil",
|
60 |
+
return_dict: bool = True,
|
61 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
62 |
+
guidance_rescale: float = 0.0,
|
63 |
+
original_size: Tuple[int, int] = None,
|
64 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
65 |
+
target_size: Tuple[int, int] = None,
|
66 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
67 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
68 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
69 |
+
aesthetic_score: float = 6.0,
|
70 |
+
negative_aesthetic_score: float = 2.5,
|
71 |
+
clip_skip: Optional[int] = None,
|
72 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
73 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
74 |
+
num_inference_steps: int = 50,
|
75 |
+
inv_hp=None,
|
76 |
+
**kwargs,
|
77 |
+
):
|
78 |
+
callback = kwargs.pop("callback", None)
|
79 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
80 |
+
|
81 |
+
if callback is not None:
|
82 |
+
deprecate(
|
83 |
+
"callback",
|
84 |
+
"1.0.0",
|
85 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
86 |
+
)
|
87 |
+
if callback_steps is not None:
|
88 |
+
deprecate(
|
89 |
+
"callback_steps",
|
90 |
+
"1.0.0",
|
91 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
92 |
+
)
|
93 |
+
|
94 |
+
# 1. Check inputs. Raise error if not correct
|
95 |
+
self.check_inputs(
|
96 |
+
prompt,
|
97 |
+
prompt_2,
|
98 |
+
strength,
|
99 |
+
num_inversion_steps,
|
100 |
+
callback_steps,
|
101 |
+
negative_prompt,
|
102 |
+
negative_prompt_2,
|
103 |
+
prompt_embeds,
|
104 |
+
negative_prompt_embeds,
|
105 |
+
callback_on_step_end_tensor_inputs,
|
106 |
+
)
|
107 |
+
|
108 |
+
denoising_start_fr = 1.0 - denoising_start
|
109 |
+
denoising_start = denoising_start
|
110 |
+
|
111 |
+
self._guidance_scale = guidance_scale
|
112 |
+
self._guidance_rescale = guidance_rescale
|
113 |
+
self._clip_skip = clip_skip
|
114 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
115 |
+
self._denoising_end = denoising_end
|
116 |
+
self._denoising_start = denoising_start
|
117 |
+
|
118 |
+
# 2. Define call parameters
|
119 |
+
if prompt is not None and isinstance(prompt, str):
|
120 |
+
batch_size = 1
|
121 |
+
elif prompt is not None and isinstance(prompt, list):
|
122 |
+
batch_size = len(prompt)
|
123 |
+
else:
|
124 |
+
batch_size = prompt_embeds.shape[0]
|
125 |
+
|
126 |
+
device = self._execution_device
|
127 |
+
|
128 |
+
# 3. Encode input prompt
|
129 |
+
text_encoder_lora_scale = (
|
130 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
131 |
+
)
|
132 |
+
(
|
133 |
+
prompt_embeds,
|
134 |
+
negative_prompt_embeds,
|
135 |
+
pooled_prompt_embeds,
|
136 |
+
negative_pooled_prompt_embeds,
|
137 |
+
) = self.encode_prompt(
|
138 |
+
prompt=prompt,
|
139 |
+
prompt_2=prompt_2,
|
140 |
+
device=device,
|
141 |
+
num_images_per_prompt=num_images_per_prompt,
|
142 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
143 |
+
negative_prompt=negative_prompt,
|
144 |
+
negative_prompt_2=negative_prompt_2,
|
145 |
+
prompt_embeds=prompt_embeds,
|
146 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
147 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
148 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
149 |
+
lora_scale=text_encoder_lora_scale,
|
150 |
+
clip_skip=self.clip_skip,
|
151 |
+
)
|
152 |
+
|
153 |
+
# 4. Preprocess image
|
154 |
+
image = self.image_processor.preprocess(image)
|
155 |
+
|
156 |
+
# 5. Prepare timesteps
|
157 |
+
def denoising_value_valid(dnv):
|
158 |
+
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
159 |
+
|
160 |
+
timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps)
|
161 |
+
timesteps_num_inference_steps, num_inference_steps = retrieve_timesteps(self.scheduler_inference,
|
162 |
+
num_inference_steps, device, None)
|
163 |
+
|
164 |
+
timesteps, num_inversion_steps = self.get_timesteps(
|
165 |
+
num_inversion_steps,
|
166 |
+
strength,
|
167 |
+
device,
|
168 |
+
denoising_start=self.denoising_start if denoising_value_valid else None,
|
169 |
+
)
|
170 |
+
# latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
171 |
+
|
172 |
+
# add_noise = True if self.denoising_start is None else False
|
173 |
+
# 6. Prepare latent variables
|
174 |
+
with torch.no_grad():
|
175 |
+
latents = self.prepare_latents(
|
176 |
+
image,
|
177 |
+
None,
|
178 |
+
batch_size,
|
179 |
+
num_images_per_prompt,
|
180 |
+
prompt_embeds.dtype,
|
181 |
+
device,
|
182 |
+
generator,
|
183 |
+
False,
|
184 |
+
)
|
185 |
+
# 7. Prepare extra step kwargs.
|
186 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
187 |
+
|
188 |
+
height, width = latents.shape[-2:]
|
189 |
+
height = height * self.vae_scale_factor
|
190 |
+
width = width * self.vae_scale_factor
|
191 |
+
|
192 |
+
original_size = original_size or (height, width)
|
193 |
+
target_size = target_size or (height, width)
|
194 |
+
|
195 |
+
# 8. Prepare added time ids & embeddings
|
196 |
+
if negative_original_size is None:
|
197 |
+
negative_original_size = original_size
|
198 |
+
if negative_target_size is None:
|
199 |
+
negative_target_size = target_size
|
200 |
+
|
201 |
+
add_text_embeds = pooled_prompt_embeds
|
202 |
+
if self.text_encoder_2 is None:
|
203 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
204 |
+
else:
|
205 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
206 |
+
|
207 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
208 |
+
original_size,
|
209 |
+
crops_coords_top_left,
|
210 |
+
target_size,
|
211 |
+
aesthetic_score,
|
212 |
+
negative_aesthetic_score,
|
213 |
+
negative_original_size,
|
214 |
+
negative_crops_coords_top_left,
|
215 |
+
negative_target_size,
|
216 |
+
dtype=prompt_embeds.dtype,
|
217 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
218 |
+
)
|
219 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
220 |
+
|
221 |
+
if self.do_classifier_free_guidance:
|
222 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
223 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
224 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
225 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
226 |
+
|
227 |
+
prompt_embeds = prompt_embeds.to(device)
|
228 |
+
add_text_embeds = add_text_embeds.to(device)
|
229 |
+
add_time_ids = add_time_ids.to(device)
|
230 |
+
|
231 |
+
if ip_adapter_image is not None:
|
232 |
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
233 |
+
if self.do_classifier_free_guidance:
|
234 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
235 |
+
image_embeds = image_embeds.to(device)
|
236 |
+
|
237 |
+
# 9. Denoising loop
|
238 |
+
num_warmup_steps = max(len(timesteps) - num_inversion_steps * self.scheduler.order, 0)
|
239 |
+
prev_timestep = None
|
240 |
+
|
241 |
+
self._num_timesteps = len(timesteps)
|
242 |
+
self.prev_z = torch.clone(latents)
|
243 |
+
self.prev_z4 = torch.clone(latents)
|
244 |
+
self.z_0 = torch.clone(latents)
|
245 |
+
g_cpu = torch.Generator().manual_seed(7865)
|
246 |
+
self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype)
|
247 |
+
|
248 |
+
# Friendly inversion params
|
249 |
+
timesteps_for = reversed(timesteps)
|
250 |
+
noise = randn_tensor(latents.shape, generator=g_cpu, device=latents.device, dtype=latents.dtype)
|
251 |
+
#latents = latents
|
252 |
+
z_T = latents.clone()
|
253 |
+
|
254 |
+
all_latents = [latents.clone()]
|
255 |
+
with self.progress_bar(total=num_inversion_steps) as progress_bar:
|
256 |
+
for i, t in enumerate(timesteps_for):
|
257 |
+
|
258 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
259 |
+
if ip_adapter_image is not None:
|
260 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
261 |
+
|
262 |
+
z_tp1 = self.inversion_step(latents,
|
263 |
+
t,
|
264 |
+
prompt_embeds,
|
265 |
+
added_cond_kwargs,
|
266 |
+
prev_timestep=prev_timestep,
|
267 |
+
inv_hp=inv_hp,
|
268 |
+
z_0=self.z_0)
|
269 |
+
|
270 |
+
prev_timestep = t
|
271 |
+
latents = z_tp1
|
272 |
+
|
273 |
+
all_latents.append(latents.clone())
|
274 |
+
|
275 |
+
if callback_on_step_end is not None:
|
276 |
+
callback_kwargs = {}
|
277 |
+
for k in callback_on_step_end_tensor_inputs:
|
278 |
+
callback_kwargs[k] = locals()[k]
|
279 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
280 |
+
|
281 |
+
latents = callback_outputs.pop("latents", latents)
|
282 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
283 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
284 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
285 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
286 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
287 |
+
)
|
288 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
289 |
+
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
290 |
+
|
291 |
+
# call the callback, if provided
|
292 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
293 |
+
progress_bar.update()
|
294 |
+
if callback is not None and i % callback_steps == 0:
|
295 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
296 |
+
callback(step_idx, t, latents)
|
297 |
+
|
298 |
+
image = latents
|
299 |
+
|
300 |
+
# Offload all models
|
301 |
+
self.maybe_free_model_hooks()
|
302 |
+
|
303 |
+
return StableDiffusionXLPipelineOutput(images=image), all_latents
|
304 |
+
|
305 |
+
def get_timestamp_dist(self, z_0, timesteps):
|
306 |
+
timesteps = timesteps.to(z_0.device)
|
307 |
+
sigma = self.scheduler.sigmas.cuda()[:-1][self.scheduler.timesteps == timesteps]
|
308 |
+
z_0 = z_0.reshape(-1, 1)
|
309 |
+
|
310 |
+
def gaussian_pdf(x):
|
311 |
+
shape = x.shape
|
312 |
+
x = x.reshape(-1, 1)
|
313 |
+
all_probs = - 0.5 * torch.pow(((x - z_0) / sigma), 2)
|
314 |
+
return all_probs.reshape(shape)
|
315 |
+
|
316 |
+
return gaussian_pdf
|
317 |
+
|
318 |
+
# @torch.no_grad()
|
319 |
+
def inversion_step(
|
320 |
+
self,
|
321 |
+
z_t: torch.tensor,
|
322 |
+
t: torch.tensor,
|
323 |
+
prompt_embeds,
|
324 |
+
added_cond_kwargs,
|
325 |
+
prev_timestep: Optional[torch.tensor] = None,
|
326 |
+
inv_hp=None,
|
327 |
+
z_0=None,
|
328 |
+
) -> torch.tensor:
|
329 |
+
|
330 |
+
n_iters, alpha, lr = inv_hp
|
331 |
+
latent = z_t
|
332 |
+
best_latent = None
|
333 |
+
best_score = torch.inf
|
334 |
+
curr_dist = self.get_timestamp_dist(z_0, t)
|
335 |
+
for i in range(n_iters):
|
336 |
+
latent.requires_grad = True
|
337 |
+
noise_pred = self.unet_pass(latent, t, prompt_embeds, added_cond_kwargs)
|
338 |
+
|
339 |
+
next_latent = self.backward_step(noise_pred, t, z_t, prev_timestep)
|
340 |
+
f_x = (next_latent - latent).abs() - alpha * curr_dist(next_latent)
|
341 |
+
score = f_x.mean()
|
342 |
+
|
343 |
+
if score < best_score:
|
344 |
+
best_score = score
|
345 |
+
best_latent = next_latent.detach()
|
346 |
+
|
347 |
+
f_x.sum().backward()
|
348 |
+
latent = latent - lr * (f_x / latent.grad)
|
349 |
+
latent.grad = None
|
350 |
+
latent._grad_fn = None
|
351 |
+
|
352 |
+
# if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE:
|
353 |
+
# noise_pred = self.unet_pass(best_latent, t, prompt_embeds, added_cond_kwargs)
|
354 |
+
# self.scheduler.step_and_update_noise(noise_pred, t, best_latent, z_t, return_dict=False,
|
355 |
+
# update_epsilon_type=self.cfg.update_epsilon_type)
|
356 |
+
return best_latent
|
357 |
+
|
358 |
+
@torch.no_grad()
|
359 |
+
def unet_pass(self, z_t, t, prompt_embeds, added_cond_kwargs):
|
360 |
+
latent_model_input = torch.cat([z_t] * 2) if self.do_classifier_free_guidance else z_t
|
361 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
362 |
+
return self.unet(
|
363 |
+
latent_model_input,
|
364 |
+
t,
|
365 |
+
encoder_hidden_states=prompt_embeds,
|
366 |
+
timestep_cond=None,
|
367 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
368 |
+
added_cond_kwargs=added_cond_kwargs,
|
369 |
+
return_dict=False,
|
370 |
+
)[0]
|
371 |
+
|
372 |
+
@torch.no_grad()
|
373 |
+
def backward_step(self, nosie_pred, t, z_t, prev_timestep):
|
374 |
+
extra_step_kwargs = {}
|
375 |
+
return self.scheduler.inv_step(nosie_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach()
|