File size: 4,391 Bytes
5978fbd
 
 
 
 
bff370f
 
 
 
5978fbd
 
 
bff370f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5978fbd
 
 
 
 
bff370f
 
 
 
 
 
 
 
5978fbd
bff370f
 
 
5978fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bff370f
 
 
 
5978fbd
bff370f
 
 
5978fbd
 
 
bff370f
 
5978fbd
 
bff370f
5978fbd
 
bff370f
5978fbd
bff370f
 
 
 
 
5978fbd
bff370f
 
5978fbd
bff370f
 
 
5978fbd
 
 
 
 
 
 
 
 
 
 
 
bff370f
5978fbd
 
 
 
 
bff370f
5978fbd
bff370f
 
 
 
 
 
 
 
 
 
 
5978fbd
 
 
bff370f
5978fbd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from src.euler_scheduler import MyEulerAncestralDiscreteScheduler
from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image
from src.sdxl_inversion_pipeline import SDXLDDIMPipeline
from src.config import RunConfig

device = "cuda" if torch.cuda.is_available() else "cpu"


scheduler_class = MyEulerAncestralDiscreteScheduler


pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
pipe_inference.scheduler            = scheduler_class.from_config(pipe_inference.scheduler.config)
pipe_inversion.scheduler            = scheduler_class.from_config(pipe_inversion.scheduler.config)
pipe_inversion.scheduler_inference  = scheduler_class.from_config(pipe_inference.scheduler.config)


# if torch.cuda.is_available():
#     torch.cuda.max_memory_allocated(device=device)
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
#     pipe.enable_xformers_memory_efficient_attention()
#     pipe = pipe.to(device)
# else: 
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
#     pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024





def infer(input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps=4, num_inversion_steps=4, inversion_max_step=0.6):
    config = RunConfig(num_inference_steps=num_inference_steps,
                       num_inversion_steps=num_inversion_steps,
                       guidance_scale=guidance_scale,
                       inversion_max_step=inversion_max_step)
    
    editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config)

    editor.edit(target_prompt)
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:

    gr.Markdown(f"""
    # RNRI briel and links on device: {power_device}.
    """)
    with gr.Column(elem_id="col-container"):

        with gr.Row():
            input_image = gr.Image(label="Input image", sources=['upload', 'webcam', 'clipboard'], type="pil")
        
        with gr.Row():
            
            description_prompt = gr.Text(
                label="Image description",
                show_label=False,
                max_lines=1,
                placeholder="Enter your image description",
                container=False,
            )
          
        
        with gr.Row():
  
            target_prompt = gr.Text(
                label="Edit prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your edit prompt",
                container=False,
            )

        
        with gr.Accordion("Advanced Settings", open=False):
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of RNRI iterations",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=2,
                )

        
        with gr.Row():
            run_button = gr.Button("Edit", scale=0)

    with gr.Column(elem_id="col-container"):
    
        result = gr.Image(label="Result", show_label=False)
    
        # gr.Examples(
        #     examples = examples,
        #     inputs = [prompt]
        # )

    run_button.click(
        fn = infer,
        inputs = [input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()