barakmeiri commited on
Commit
bff370f
·
verified ·
1 Parent(s): 45efc4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -75
app.py CHANGED
@@ -3,38 +3,49 @@ import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
 
 
 
 
38
  return image
39
 
40
  examples = [
@@ -56,63 +67,38 @@ else:
56
  power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
-
 
 
 
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
 
66
  with gr.Row():
67
 
68
- prompt = gr.Text(
69
- label="Prompt",
70
  show_label=False,
71
  max_lines=1,
72
- placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
 
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
  max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
  )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
 
117
  with gr.Row():
118
 
@@ -125,21 +111,29 @@ with gr.Blocks(css=css) as demo:
125
  )
126
 
127
  num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
  minimum=1,
130
  maximum=12,
131
  step=1,
132
  value=2,
133
  )
 
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
 
 
 
 
 
 
 
139
 
140
  run_button.click(
141
  fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
  outputs = [result]
144
  )
145
 
 
3
  import random
4
  from diffusers import DiffusionPipeline
5
  import torch
6
+ from src.euler_scheduler import MyEulerAncestralDiscreteScheduler
7
+ from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image
8
+ from src.sdxl_inversion_pipeline import SDXLDDIMPipeline
9
+ from src.config import RunConfig
10
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
+
14
+ scheduler_class = MyEulerAncestralDiscreteScheduler
15
+
16
+
17
+ pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
18
+ pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
19
+ pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config)
20
+ pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config)
21
+ pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config)
22
+
23
+
24
+ # if torch.cuda.is_available():
25
+ # torch.cuda.max_memory_allocated(device=device)
26
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
27
+ # pipe.enable_xformers_memory_efficient_attention()
28
+ # pipe = pipe.to(device)
29
+ # else:
30
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
31
+ # pipe = pipe.to(device)
32
 
33
  MAX_SEED = np.iinfo(np.int32).max
34
  MAX_IMAGE_SIZE = 1024
35
 
 
36
 
37
+
38
+
39
+
40
+ def infer(input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps=4, num_inversion_steps=4, inversion_max_step=0.6):
41
+ config = RunConfig(num_inference_steps=num_inference_steps,
42
+ num_inversion_steps=num_inversion_steps,
43
+ guidance_scale=guidance_scale,
44
+ inversion_max_step=inversion_max_step)
 
 
 
 
 
 
45
 
46
+ editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config)
47
+
48
+ editor.edit(target_prompt)
49
  return image
50
 
51
  examples = [
 
67
  power_device = "CPU"
68
 
69
  with gr.Blocks(css=css) as demo:
70
+
71
+ gr.Markdown(f"""
72
+ # RNRI briel and links on device: {power_device}.
73
+ """)
74
  with gr.Column(elem_id="col-container"):
75
+
76
+ with gr.Row():
77
+ input_image = gr.Image(label="Input image", sources=['upload', 'webcam', 'clipboard'], type="pil")
 
78
 
79
  with gr.Row():
80
 
81
+ description_prompt = gr.Text(
82
+ label="Image description",
83
  show_label=False,
84
  max_lines=1,
85
+ placeholder="Enter your image description",
86
  container=False,
87
  )
88
+
 
89
 
90
+ with gr.Row():
91
+
92
+ target_prompt = gr.Text(
93
+ label="Edit prompt",
94
+ show_label=False,
 
95
  max_lines=1,
96
+ placeholder="Enter your edit prompt",
97
+ container=False,
 
 
 
 
 
 
 
 
98
  )
99
+
100
+
101
+ with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  with gr.Row():
104
 
 
111
  )
112
 
113
  num_inference_steps = gr.Slider(
114
+ label="Number of RNRI iterations",
115
  minimum=1,
116
  maximum=12,
117
  step=1,
118
  value=2,
119
  )
120
+
121
 
122
+ with gr.Row():
123
+ run_button = gr.Button("Edit", scale=0)
124
+
125
+ with gr.Column(elem_id="col-container"):
126
+
127
+ result = gr.Image(label="Result", show_label=False)
128
+
129
+ # gr.Examples(
130
+ # examples = examples,
131
+ # inputs = [prompt]
132
+ # )
133
 
134
  run_button.click(
135
  fn = infer,
136
+ inputs = [input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps, num_inference_steps],
137
  outputs = [result]
138
  )
139