Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,38 +3,49 @@ import numpy as np
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
|
|
|
|
|
|
|
38 |
return image
|
39 |
|
40 |
examples = [
|
@@ -56,63 +67,38 @@ else:
|
|
56 |
power_device = "CPU"
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
-
|
|
|
|
|
|
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
""")
|
65 |
|
66 |
with gr.Row():
|
67 |
|
68 |
-
|
69 |
-
label="
|
70 |
show_label=False,
|
71 |
max_lines=1,
|
72 |
-
placeholder="Enter your
|
73 |
container=False,
|
74 |
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
label="Negative prompt",
|
84 |
max_lines=1,
|
85 |
-
placeholder="Enter
|
86 |
-
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
|
117 |
with gr.Row():
|
118 |
|
@@ -125,21 +111,29 @@ with gr.Blocks(css=css) as demo:
|
|
125 |
)
|
126 |
|
127 |
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of
|
129 |
minimum=1,
|
130 |
maximum=12,
|
131 |
step=1,
|
132 |
value=2,
|
133 |
)
|
|
|
134 |
|
135 |
-
gr.
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
run_button.click(
|
141 |
fn = infer,
|
142 |
-
inputs = [
|
143 |
outputs = [result]
|
144 |
)
|
145 |
|
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
+
from src.euler_scheduler import MyEulerAncestralDiscreteScheduler
|
7 |
+
from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image
|
8 |
+
from src.sdxl_inversion_pipeline import SDXLDDIMPipeline
|
9 |
+
from src.config import RunConfig
|
10 |
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
|
14 |
+
scheduler_class = MyEulerAncestralDiscreteScheduler
|
15 |
+
|
16 |
+
|
17 |
+
pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
|
18 |
+
pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device)
|
19 |
+
pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config)
|
20 |
+
pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config)
|
21 |
+
pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config)
|
22 |
+
|
23 |
+
|
24 |
+
# if torch.cuda.is_available():
|
25 |
+
# torch.cuda.max_memory_allocated(device=device)
|
26 |
+
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
27 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
28 |
+
# pipe = pipe.to(device)
|
29 |
+
# else:
|
30 |
+
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
31 |
+
# pipe = pipe.to(device)
|
32 |
|
33 |
MAX_SEED = np.iinfo(np.int32).max
|
34 |
MAX_IMAGE_SIZE = 1024
|
35 |
|
|
|
36 |
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def infer(input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps=4, num_inversion_steps=4, inversion_max_step=0.6):
|
41 |
+
config = RunConfig(num_inference_steps=num_inference_steps,
|
42 |
+
num_inversion_steps=num_inversion_steps,
|
43 |
+
guidance_scale=guidance_scale,
|
44 |
+
inversion_max_step=inversion_max_step)
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config)
|
47 |
+
|
48 |
+
editor.edit(target_prompt)
|
49 |
return image
|
50 |
|
51 |
examples = [
|
|
|
67 |
power_device = "CPU"
|
68 |
|
69 |
with gr.Blocks(css=css) as demo:
|
70 |
+
|
71 |
+
gr.Markdown(f"""
|
72 |
+
# RNRI briel and links on device: {power_device}.
|
73 |
+
""")
|
74 |
with gr.Column(elem_id="col-container"):
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
input_image = gr.Image(label="Input image", sources=['upload', 'webcam', 'clipboard'], type="pil")
|
|
|
78 |
|
79 |
with gr.Row():
|
80 |
|
81 |
+
description_prompt = gr.Text(
|
82 |
+
label="Image description",
|
83 |
show_label=False,
|
84 |
max_lines=1,
|
85 |
+
placeholder="Enter your image description",
|
86 |
container=False,
|
87 |
)
|
88 |
+
|
|
|
89 |
|
90 |
+
with gr.Row():
|
91 |
+
|
92 |
+
target_prompt = gr.Text(
|
93 |
+
label="Edit prompt",
|
94 |
+
show_label=False,
|
|
|
95 |
max_lines=1,
|
96 |
+
placeholder="Enter your edit prompt",
|
97 |
+
container=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
+
|
100 |
+
|
101 |
+
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
with gr.Row():
|
104 |
|
|
|
111 |
)
|
112 |
|
113 |
num_inference_steps = gr.Slider(
|
114 |
+
label="Number of RNRI iterations",
|
115 |
minimum=1,
|
116 |
maximum=12,
|
117 |
step=1,
|
118 |
value=2,
|
119 |
)
|
120 |
+
|
121 |
|
122 |
+
with gr.Row():
|
123 |
+
run_button = gr.Button("Edit", scale=0)
|
124 |
+
|
125 |
+
with gr.Column(elem_id="col-container"):
|
126 |
+
|
127 |
+
result = gr.Image(label="Result", show_label=False)
|
128 |
+
|
129 |
+
# gr.Examples(
|
130 |
+
# examples = examples,
|
131 |
+
# inputs = [prompt]
|
132 |
+
# )
|
133 |
|
134 |
run_button.click(
|
135 |
fn = infer,
|
136 |
+
inputs = [input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps, num_inference_steps],
|
137 |
outputs = [result]
|
138 |
)
|
139 |
|