File size: 7,490 Bytes
5978fbd
b6d3fe5
5978fbd
bff370f
 
 
 
dc77641
3104476
5978fbd
 
bff370f
 
 
 
 
 
 
 
5978fbd
b6d3fe5
 
 
 
 
 
 
 
 
 
5978fbd
 
 
 
 
 
b6d3fe5
3104476
 
cd4f796
b6d3fe5
cd4f796
bff370f
6711456
 
c842a65
 
 
2b6ccee
8f7b417
947bcf8
8f7b417
947bcf8
8f7b417
 
947bcf8
2b6ccee
 
 
947bcf8
2b6ccee
c842a65
 
 
 
2b6ccee
8f7b417
 
947bcf8
2b6ccee
c842a65
 
 
 
8f7b417
 
 
62508ec
8756fd9
c842a65
8f7b417
436ce8f
b6d3fe5
 
 
4dc9242
b6d3fe5
5978fbd
b6d3fe5
 
8f7b417
b6d3fe5
 
3104476
b6d3fe5
5978fbd
b6d3fe5
 
 
 
 
 
 
 
 
 
 
 
6711456
b6d3fe5
 
 
 
 
bff370f
004b80f
 
 
 
 
 
 
 
6711456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d3fe5
6711456
 
 
b6d3fe5
 
 
6711456
 
 
8f7b417
6711456
 
 
 
 
 
 
 
 
8f7b417
 
 
 
 
 
5978fbd
505b4e4
 
 
6711456
 
505b4e4
 
5978fbd
505b4e4
 
b6d3fe5
5978fbd
 
b6d3fe5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr

import torch
from src.euler_scheduler import MyEulerAncestralDiscreteScheduler
from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image
from src.sdxl_inversion_pipeline import SDXLDDIMPipeline
from src.config import RunConfig
from src.editor import ImageEditorDemo
import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"

# if torch.cuda.is_available():
#     torch.cuda.max_memory_allocated(device=device)
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
#     pipe.enable_xformers_memory_efficient_attention()
#     pipe = pipe.to(device)
# else: 
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
#     pipe = pipe.to(device)

# css = """
# #col-container-1 {
#     margin: 0 auto;
#     max-width: 520px;
# }
# #col-container-2 {
#     margin: 0 auto;
#     max-width: 520px;
# }
# """

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

# with gr.Blocks(css=css) as demo:
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(f""" # Real Time Editing with RNRI Inversion 🍎⚡️
    This is a demo for our [paper](https://arxiv.org/abs/2312.12540) **RNRI: Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models**.
    Image editing using our RNRI for inversion demonstrates significant speed-up and improved quality compared to previous state-of-the-art methods.
    Take a look at our [project page](https://barakmam.github.io/rnri.github.io/).
    """)
    editor_state = gr.State()

    @spaces.GPU
    def set_pipe(input_image, description_prompt, edit_guidance_scale, num_inference_steps=4,
                 num_inversion_steps=4, inversion_max_step=0.6, rnri_iterations=2, rnri_alpha=0.1, rnri_lr=0.2):
        scheduler_class = MyEulerAncestralDiscreteScheduler

        print('\n################## 1')
        pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)  # .to('cpu')
        print('\n################## 2')
        pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo",
                                                                    use_safetensors=True)  # .to('cpu')
        print('\n################## 3')
        pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config)
        pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config)
        pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config)
        print('\n################## 4')

        config = RunConfig(num_inference_steps=num_inference_steps,
                           num_inversion_steps=num_inversion_steps,
                           edit_guidance_scale=edit_guidance_scale,
                           inversion_max_step=inversion_max_step)
        image_editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image,
                                       description_prompt, config, device,
                                       [rnri_iterations, rnri_alpha, rnri_lr])
        print('\n################## 5')
        return image_editor, "Input has set!"
    @spaces.GPU
    def edit(editor, target_prompt):
        if editor is None:
            raise gr.Error("Set inputs before editing.")
        # if device == "cuda":
        #       image = editor.to(device).edit(target_prompt)
        #  else:
        image = editor.edit(target_prompt)
        return image


    gr.Markdown(f"""running on {power_device}""")
    with gr.Row():
        with gr.Column(elem_id="col-container-1"):
            with gr.Row():
                input_image = gr.Image(label="Input image", sources=['upload', 'webcam'], type="pil")

            with gr.Row():
                description_prompt = gr.Text(
                    label="Image description",
                    info="Enter your image description ",
                    show_label=False,
                    max_lines=1,
                    placeholder="a cake on a table",
                    container=False,
                )

            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    edit_guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=1.2,
                    )

                    num_inference_steps = gr.Slider(
                        label="Inference steps",
                        minimum=1,
                        maximum=12,
                        step=1,
                        value=4,
                    )

                    inversion_max_step = gr.Slider(
                        label="Inversion strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=0.6,
                    )

                    rnri_iterations = gr.Slider(
                        label="RNRI iterations",
                        minimum=0,
                        maximum=5,
                        step=1,
                        value=2,
                    )
                    rnri_alpha = gr.Slider(
                        label="RNRI alpha",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.1,
                    )
                    rnri_lr = gr.Slider(
                        label="RNRI learning rate",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.2,
                    )

            with gr.Row():
                set_button = gr.Button("Set input image & description & settings", scale=1)

                is_set_text = gr.Text("", show_label=False)
        with gr.Column(elem_id="col-container-2"):
            result = gr.Image(label="Result")

            with gr.Row():
                target_prompt = gr.Text(
                    label="Edit prompt",
                    info="Enter your edit prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="an oreo cake on a table",
                    container=False,
                )

            with gr.Row():
                run_button = gr.Button("Edit", scale=1)

            with gr.Row():
                gr.Examples(
                    examples='examples',
                    inputs=[input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps,
                            inversion_max_step, rnri_iterations, rnri_alpha, rnri_lr],
                )

    set_button.click(
        fn=set_pipe,
        inputs=[input_image, description_prompt, edit_guidance_scale, num_inference_steps,
                num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha, rnri_lr],
        outputs=[editor_state, is_set_text],
    )

    run_button.click(
        fn=edit,
        inputs=[editor_state, target_prompt],
        outputs=[result]
    )

demo.queue().launch()

# im = infer(input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps=4, num_inversion_steps=4,
#           inversion_max_step=0.6)