File size: 11,642 Bytes
5978fbd
b6d3fe5
5978fbd
bff370f
 
 
 
dc77641
3104476
8fd5fc2
5978fbd
 
bff370f
 
 
 
 
 
 
 
5978fbd
b6d3fe5
 
 
 
 
 
 
 
 
 
5978fbd
5be29af
3f9fe08
5978fbd
e70c515
 
16858f2
e3bc468
4f8debf
e70c515
 
 
 
5be29af
 
 
3f9fe08
 
 
b6d3fe5
506cf95
 
6163c61
 
 
c9fcb1b
bff370f
be6b787
8fd5fc2
 
698ea30
be6b787
e3bc468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16858f2
4f8debf
16858f2
11be735
1528d83
e3bc468
16858f2
d8f4eaf
16858f2
4f8debf
8086df1
156e670
e3bc468
 
698ea30
97ef95f
e3bc468
156e670
11be735
4f8debf
e3bc468
16858f2
e3bc468
 
 
b6d3fe5
 
 
4dc9242
5978fbd
b6d3fe5
 
8f7b417
b6d3fe5
 
cb0c1d5
b6d3fe5
5978fbd
b6d3fe5
 
 
 
 
 
 
 
 
 
 
 
6711456
b6d3fe5
 
 
 
 
bff370f
004b80f
 
 
 
 
 
 
 
6711456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebd82f
6711456
3ebd82f
b6d3fe5
 
 
6711456
 
 
8f7b417
6711456
 
cb0c1d5
6711456
 
 
 
 
 
3d2ee5b
 
 
e4eecf5
 
6163c61
3d2ee5b
5978fbd
18f1840
 
 
 
 
8fd5fc2
be6b787
8fd5fc2
 
 
4567708
8fd5fc2
be6b787
8fd5fc2
 
 
4567708
be6b787
8fd5fc2
 
 
4567708
be6b787
8fd5fc2
 
 
4567708
be6b787
8fd5fc2
 
 
4567708
be6b787
8fd5fc2
 
 
4567708
be6b787
8fd5fc2
 
 
4567708
8fd5fc2
 
 
be6b787
8fd5fc2
be6b787
8fd5fc2
505b4e4
5978fbd
505b4e4
be6b787
b6d3fe5
5978fbd
 
b6d3fe5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr

import torch
from src.euler_scheduler import MyEulerAncestralDiscreteScheduler
from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image
from src.sdxl_inversion_pipeline import SDXLDDIMPipeline
from src.config import RunConfig
from src.editor import ImageEditorDemo
import spaces

device = "cuda" if torch.cuda.is_available() else "cpu"

# if torch.cuda.is_available():
#     torch.cuda.max_memory_allocated(device=device)
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
#     pipe.enable_xformers_memory_efficient_attention()
#     pipe = pipe.to(device)
# else: 
#     pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
#     pipe = pipe.to(device)

# css = """
# #col-container-1 {
#     margin: 0 auto;
#     max-width: 520px;
# }
# #col-container-2 {
#     margin: 0 auto;
#     max-width: 520px;
# }
# """

if device == "cuda":
    torch.cuda.max_memory_allocated(device=device)

scheduler_class = MyEulerAncestralDiscreteScheduler

pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)#.to(device)
pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo",
                                                            use_safetensors=True).to(device)
pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config)
pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config)
pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config)

if device == "cuda":
    pipe_inference.enable_xformers_memory_efficient_attention()
    pipe_inversion.enable_xformers_memory_efficient_attention()



# with gr.Blocks(css=css) as demo:
# with gr.Blocks(css="style.css") as demo:
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(f""" # Real Time Editing with GNRI Inversion 🍎⚡️
    This is a demo for our [paper](https://arxiv.org/abs/2312.12540) **GNRI: Lightning-fast Image Inversion and Editing for Text-to-Image Diffusion Models**.
    Image editing using GNRI for inversion demonstrates significant speed-up and improved quality compared to previous state-of-the-art methods.
    Take a look at the [project page](https://barakmam.github.io/rnri.github.io/).
    """)
    inv_state = gr.State()


    @spaces.GPU
    def set_pipe(input_image, description_prompt, edit_guidance_scale, num_inference_steps=4,
                 num_inversion_steps=4, inversion_max_step=0.6, rnri_iterations=2, rnri_alpha=0.1, rnri_lr=0.2):

        if input_image is None or not description_prompt:
            return None, "Please set all inputs."

        if isinstance(num_inference_steps, str): num_inference_steps = int(num_inference_steps)
        if isinstance(num_inversion_steps, str): num_inversion_steps = int(num_inversion_steps)
        if isinstance(edit_guidance_scale, str): edit_guidance_scale = float(edit_guidance_scale)
        if isinstance(inversion_max_step, str): inversion_max_step = float(inversion_max_step)
        if isinstance(rnri_iterations, str): rnri_iterations = int(rnri_iterations)
        if isinstance(rnri_alpha, str): rnri_alpha = float(rnri_alpha)
        if isinstance(rnri_lr, str): rnri_lr = float(rnri_lr)

        config = RunConfig(num_inference_steps=num_inference_steps,
                           num_inversion_steps=num_inversion_steps,
                           edit_guidance_scale=edit_guidance_scale,
                           inversion_max_step=inversion_max_step)
        if device == 'cuda':
            pipe_inference.to('cpu')
            torch.cuda.empty_cache()

        inversion_state = ImageEditorDemo.invert(pipe_inversion.to(device), input_image, description_prompt, config,
                                                 [rnri_iterations, rnri_alpha, rnri_lr], device)
        if device == 'cuda':
            pipe_inversion.to('cpu')
            torch.cuda.empty_cache()
            pipe_inference.to(device)

        gr.Info('Input has set!')
        return inversion_state, "Input has set!"

    @spaces.GPU
    def edit(inversion_state, target_prompt):
        if inversion_state is None:
            raise gr.Error("Set inputs before editing. Progress indication below")

        image = ImageEditorDemo.edit(pipe_inference, target_prompt, inversion_state['latent'], inversion_state['noise'],
                                     inversion_state['cfg'], inversion_state['cfg'].edit_guidance_scale)

        return image


    with gr.Row():
        with gr.Column(elem_id="col-container-1"):
            with gr.Row():
                input_image = gr.Image(label="Input image", sources=['upload', 'webcam'], type="pil")
            with gr.Row():
                description_prompt = gr.Text(
                    label="Image description",
                    info="Enter your image description ",
                    show_label=False,
                    max_lines=1,
                    placeholder="Example: a cake on a table",
                    container=False,
                )

            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    edit_guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=1.2,
                    )

                    num_inference_steps = gr.Slider(
                        label="Inference steps",
                        minimum=1,
                        maximum=12,
                        step=1,
                        value=4,
                    )

                    inversion_max_step = gr.Slider(
                        label="Inversion strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=0.6,
                    )

                    rnri_iterations = gr.Slider(
                        label="RNRI iterations",
                        minimum=0,
                        maximum=5,
                        step=1,
                        value=2,
                    )
                    rnri_alpha = gr.Slider(
                        label="RNRI alpha",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.1,
                    )
                    rnri_lr = gr.Slider(
                        label="RNRI learning rate",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.2,
                    )

            with gr.Row():
                is_set_text = gr.Text("", show_label=False)

        with gr.Column(elem_id="col-container-2"):
            result = gr.Image(label="Result")

            with gr.Row():
                target_prompt = gr.Text(
                    label="Edit prompt",
                    info="Enter your edit prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Example: an oreo cake on a table",
                    container=False,
                )

            with gr.Row():
                run_button = gr.Button("Edit", scale=1)

            with gr.Row():
                gr.Examples(
                    examples='examples',
                    inputs=[input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps,
                            inversion_max_step, rnri_iterations, rnri_alpha, rnri_lr],
                    cache_examples=False
                )

    gr.Markdown(f"""Disclaimer: Performance may be inferior to the reported in the paper due to hardware limitation.""")

    input_image.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale, num_inference_steps,
                                         num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha, rnri_lr],
                       outputs=[inv_state, is_set_text], trigger_mode='once')

    description_prompt.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale,
                                                num_inference_steps,
                                                num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha,
                                                rnri_lr],
                              outputs=[inv_state, is_set_text], trigger_mode='once')

    edit_guidance_scale.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale,
                                                 num_inference_steps,
                                                 num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha,
                                                 rnri_lr],
                               outputs=[inv_state, is_set_text], trigger_mode='once')
    num_inference_steps.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale,
                                                 num_inference_steps,
                                                 num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha,
                                                 rnri_lr],
                               outputs=[inv_state, is_set_text], trigger_mode='once')
    inversion_max_step.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale,
                                                num_inference_steps,
                                                num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha,
                                                rnri_lr],
                              outputs=[inv_state, is_set_text], trigger_mode='once')
    rnri_iterations.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale,
                                             num_inference_steps,
                                             num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha,
                                             rnri_lr],
                           outputs=[inv_state, is_set_text], trigger_mode='once')
    rnri_alpha.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale,
                                        num_inference_steps,
                                        num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha,
                                        rnri_lr],
                      outputs=[inv_state, is_set_text], trigger_mode='once')
    rnri_lr.change(set_pipe, inputs=[input_image, description_prompt, edit_guidance_scale,
                                     num_inference_steps,
                                     num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha,
                                     rnri_lr],
                   outputs=[inv_state, is_set_text], trigger_mode='once')

    # set_button.click(
    #     fn=set_pipe,
    #     inputs=[inv_state, input_image, description_prompt, edit_guidance_scale, num_inference_steps,
    #             num_inference_steps, inversion_max_step, rnri_iterations, rnri_alpha, rnri_lr],
    #     outputs=[inv_state, is_set_text],
    # )

    run_button.click(
        fn=edit,
        inputs=[inv_state, target_prompt],
        outputs=[result]
    )

demo.queue().launch()