Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Verificar si hay GPU disponible (Zero-GPU) | |
if torch.cuda.is_available(): | |
device = "cuda" # Usar GPU Zero | |
print("Zero-GPU detectada. Usando GPU para acelerar la inferencia.") | |
else: | |
device = "cpu" # Usar CPU si no hay GPU | |
print("No se detect贸 GPU. Usando CPU.") | |
# Cargar modelo m谩s peque帽o para generar c贸digo | |
model_name = "Qwen/Qwen2.5-Coder-1.5B-Instruct" | |
print("Cargando modelo...") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, # Usar float16 para ahorrar memoria | |
device_map="auto" if device == "cuda" else None # Distribuir autom谩ticamente en GPU si est谩 disponible | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Mover el modelo expl铆citamente a GPU si es necesario | |
if device == "cuda": | |
model.to("cuda") | |
print("Modelo cargado con 茅xito.") | |
def generate_code(prompt): | |
"""Genera c贸digo basado en el prompt del usuario.""" | |
messages = [ | |
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": ""} | |
] | |
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
model_inputs = tokenizer([text], return_tensors="pt").to(device) # Mover entradas al dispositivo correspondiente | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=128, # Reducir tokens para respuestas m谩s r谩pidas y ahorrar memoria | |
do_sample=True, | |
temperature=0.7 | |
) | |
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return response | |
def extract_code(output): | |
"""Extrae HTML, CSS y JavaScript del texto generado.""" | |
html_code = "" | |
css_code = "" | |
js_code = "" | |
if "<style>" in output: | |
css_start = output.find("<style>") + len("<style>") | |
css_end = output.find("</style>") | |
css_code = output[css_start:css_end].strip() | |
if "<script>" in output: | |
js_start = output.find("<script>") + len("<script>") | |
js_end = output.find("</script>") | |
js_code = output[js_start:js_end].strip() | |
if "<body>" in output: | |
html_start = output.find("<body>") + len("<body>") | |
html_end = output.find("</body>") | |
html_code = output[html_start:html_end].strip() | |
return html_code, css_code, js_code | |
def preview_app(html_code, css_code, js_code): | |
"""Devuelve una vista previa interactiva de la aplicaci贸n.""" | |
html_content = f""" | |
<html> | |
<head> | |
<style> | |
{css_code} | |
</style> | |
</head> | |
<body> | |
{html_code} | |
<script> | |
{js_code} | |
</script> | |
</body> | |
</html> | |
""" | |
return html_content | |
def run_chatbot(user_input): | |
"""Procesa la entrada del usuario y genera c贸digo + previsualizaci贸n.""" | |
code_output = generate_code(user_input) | |
# Extraer HTML, CSS y JS del c贸digo generado | |
html_code, css_code, js_code = extract_code(code_output) | |
# Previsualizar la aplicaci贸n | |
preview = preview_app(html_code, css_code, js_code) | |
return ( | |
f"### HTML:\n\n```html\n{html_code}\n```", | |
f"### CSS:\n\n```css\n{css_code}\n```", | |
f"### JavaScript:\n\n```javascript\n{js_code}\n```", | |
preview | |
) | |
# Crear la interfaz con Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("# Chatbot Creador de Aplicaciones") | |
with gr.Row(): | |
with gr.Column(): | |
user_input = gr.Textbox(label="Descripci贸n de la aplicaci贸n (Ejemplo: 'Haz un bot贸n rojo')", lines=3) | |
generate_button = gr.Button("Generar C贸digo") | |
with gr.Column(): | |
html_output = gr.Code(label="C贸digo HTML", language="html") | |
css_output = gr.Code(label="C贸digo CSS", language="css") | |
js_output = gr.Code(label="C贸digo JavaScript", language="javascript") | |
preview_output = gr.HTML(label="Previsualizaci贸n") | |
generate_button.click( | |
run_chatbot, | |
inputs=[user_input], | |
outputs=[html_output, css_output, js_output, preview_output] | |
) | |
# Lanzar la aplicaci贸n | |
if __name__ == "__main__": | |
demo.launch() |