gnosticdev commited on
Commit
344bc83
verified
1 Parent(s): a8b7750

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -21
app.py CHANGED
@@ -2,14 +2,30 @@ import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
 
 
 
 
 
 
 
 
5
  # Cargar modelo m谩s peque帽o para generar c贸digo
6
  model_name = "Qwen/Qwen2.5-Coder-1.5B-Instruct"
 
7
  model = AutoModelForCausalLM.from_pretrained(
8
  model_name,
9
- torch_dtype=torch.float16 # Usar float16 para ahorrar memoria
 
10
  )
11
  tokenizer = AutoTokenizer.from_pretrained(model_name)
12
 
 
 
 
 
 
 
13
  def generate_code(prompt):
14
  """Genera c贸digo basado en el prompt del usuario."""
15
  messages = [
@@ -18,16 +34,39 @@ def generate_code(prompt):
18
  {"role": "assistant", "content": ""}
19
  ]
20
  text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
21
- model_inputs = tokenizer([text], return_tensors="pt")
22
  generated_ids = model.generate(
23
  **model_inputs,
24
- max_new_tokens=512,
25
  do_sample=True,
26
  temperature=0.7
27
  )
28
  response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
29
  return response
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  def preview_app(html_code, css_code, js_code):
32
  """Devuelve una vista previa interactiva de la aplicaci贸n."""
33
  html_content = f"""
@@ -52,24 +91,7 @@ def run_chatbot(user_input):
52
  code_output = generate_code(user_input)
53
 
54
  # Extraer HTML, CSS y JS del c贸digo generado
55
- html_code = ""
56
- css_code = ""
57
- js_code = ""
58
-
59
- if "<style>" in code_output:
60
- css_start = code_output.find("<style>") + len("<style>")
61
- css_end = code_output.find("</style>")
62
- css_code = code_output[css_start:css_end].strip()
63
-
64
- if "<script>" in code_output:
65
- js_start = code_output.find("<script>") + len("<script>")
66
- js_end = code_output.find("</script>")
67
- js_code = code_output[js_start:js_end].strip()
68
-
69
- if "<body>" in code_output:
70
- html_start = code_output.find("<body>") + len("<body>")
71
- html_end = code_output.find("</body>")
72
- html_code = code_output[html_start:html_end].strip()
73
 
74
  # Previsualizar la aplicaci贸n
75
  preview = preview_app(html_code, css_code, js_code)
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
5
+ # Verificar si hay GPU disponible (Zero-GPU)
6
+ if torch.cuda.is_available():
7
+ device = "cuda" # Usar GPU Zero
8
+ print("Zero-GPU detectada. Usando GPU para acelerar la inferencia.")
9
+ else:
10
+ device = "cpu" # Usar CPU si no hay GPU
11
+ print("No se detect贸 GPU. Usando CPU.")
12
+
13
  # Cargar modelo m谩s peque帽o para generar c贸digo
14
  model_name = "Qwen/Qwen2.5-Coder-1.5B-Instruct"
15
+ print("Cargando modelo...")
16
  model = AutoModelForCausalLM.from_pretrained(
17
  model_name,
18
+ torch_dtype=torch.float16, # Usar float16 para ahorrar memoria
19
+ device_map="auto" if device == "cuda" else None # Distribuir autom谩ticamente en GPU si est谩 disponible
20
  )
21
  tokenizer = AutoTokenizer.from_pretrained(model_name)
22
 
23
+ # Mover el modelo expl铆citamente a GPU si es necesario
24
+ if device == "cuda":
25
+ model.to("cuda")
26
+
27
+ print("Modelo cargado con 茅xito.")
28
+
29
  def generate_code(prompt):
30
  """Genera c贸digo basado en el prompt del usuario."""
31
  messages = [
 
34
  {"role": "assistant", "content": ""}
35
  ]
36
  text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
37
+ model_inputs = tokenizer([text], return_tensors="pt").to(device) # Mover entradas al dispositivo correspondiente
38
  generated_ids = model.generate(
39
  **model_inputs,
40
+ max_new_tokens=128, # Reducir tokens para respuestas m谩s r谩pidas y ahorrar memoria
41
  do_sample=True,
42
  temperature=0.7
43
  )
44
  response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
45
  return response
46
 
47
+ def extract_code(output):
48
+ """Extrae HTML, CSS y JavaScript del texto generado."""
49
+ html_code = ""
50
+ css_code = ""
51
+ js_code = ""
52
+
53
+ if "<style>" in output:
54
+ css_start = output.find("<style>") + len("<style>")
55
+ css_end = output.find("</style>")
56
+ css_code = output[css_start:css_end].strip()
57
+
58
+ if "<script>" in output:
59
+ js_start = output.find("<script>") + len("<script>")
60
+ js_end = output.find("</script>")
61
+ js_code = output[js_start:js_end].strip()
62
+
63
+ if "<body>" in output:
64
+ html_start = output.find("<body>") + len("<body>")
65
+ html_end = output.find("</body>")
66
+ html_code = output[html_start:html_end].strip()
67
+
68
+ return html_code, css_code, js_code
69
+
70
  def preview_app(html_code, css_code, js_code):
71
  """Devuelve una vista previa interactiva de la aplicaci贸n."""
72
  html_content = f"""
 
91
  code_output = generate_code(user_input)
92
 
93
  # Extraer HTML, CSS y JS del c贸digo generado
94
+ html_code, css_code, js_code = extract_code(code_output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  # Previsualizar la aplicaci贸n
97
  preview = preview_app(html_code, css_code, js_code)