Spaces:
Sleeping
Sleeping
File size: 2,435 Bytes
a786c9d d16d3b3 cd3861d a786c9d dfd696d a786c9d 3f51add a786c9d 3f51add a786c9d 7c89955 7b09166 9bd9969 7c89955 9bd9969 7b09166 a786c9d 7c89955 7df1bda 4c6d55a dfd696d 7c89955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import pandas as pd
df = pd.read_csv('./medical_data.csv')
context_data = []
for i in range(len(df)):
context = ""
for j in range(3):
context += df.columns[j]
context += ": "
context += df.iloc[i][j]
context += " "
context_data.append(context)
import os
# Get the secret key from the environment
groq_key = os.environ.get('groq_api_keys')
## LLM used for RAG
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# create vector store!
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="medical_dataset_store",
embedding_function=embed_model,
persist_directory="./",
)
# add data to vector nstore
vectorstore.add_texts(context_data)
retriever = vectorstore.as_retriever()
from langchain_core.prompts import PromptTemplate
template = ("""You are a medical expert.
Use the provided context to answer the question.
If you don't know the answer, say so. Explain your answer in detail.
Do not discuss the context in your response; just provide the answer directly.
Context: {context}
Question: {question}
Answer:""")
rag_prompt = PromptTemplate.from_template(template)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
import gradio as gr
def rag_memory_stream(message, history)):
partial_text = ""
for new_text in rag_chain.stream(message):
partial_text += new_text
yield partial_text
examples = [
"I feel dizzy",
"what is the possible sickness for fatigue?"
]
description = "Real-time AI App with Groq API and LangChain to Answer medical questions"
chatbot = gr.Chatbot([{"role":"assistant", "content":"Hey I am medical expert, how can I help you today?"}],
type="messages",
avatar_images=None,
height="60vh")
title = "Medical Expert :) Try me!"
demo = gr.ChatInterface(fn=rag_memory_stream,
type="messages",
title=title,
)
if __name__ == "__main__":
demo.launch()
|