File size: 5,321 Bytes
5f8a996
22595de
fea8c5b
5f8a996
 
 
095368e
af68b3c
095368e
 
5f8a996
b9509da
 
 
 
5f8a996
4893869
5f8a996
51a097e
a756d15
5bed75e
b9509da
 
 
a756d15
5bed75e
b9509da
 
5f8a996
b9509da
 
 
 
fa1ed85
 
 
 
 
b9509da
 
 
 
fa1ed85
 
 
 
 
b9509da
099258b
 
2d9d3ee
c23cce4
2d9d3ee
 
c23cce4
 
1af9623
2d9d3ee
c23cce4
1af9623
2d9d3ee
c23cce4
1af9623
c23cce4
a756d15
 
5f8a996
fa786ab
eb97cd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from hidiffusion import apply_hidiffusion, remove_hidiffusion
from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL
import gradio as gr
import torch
import spaces

model = "stabilityai/stable-diffusion-xl-base-1.0"
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")

model_15 = "runwayml/stable-diffusion-v1-5"
scheduler_15 = DDIMScheduler.from_pretrained(model_15, subfolder="scheduler")
pipe_15 = DiffusionPipeline.from_pretrained(model_15, vae=vae, scheduler=scheduler_15, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")

#pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()

@spaces.GPU
def run_hidiffusion(prompt, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
    apply_hidiffusion(pipe)
    return pipe(prompt, guidance_scale=7.5, height=2048, width=2048, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]

@spaces.GPU
def run_hidiffusion_15(prompt, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
    apply_hidiffusion(pipe_15)
    return pipe_15(prompt, guidance_scale=7.5, height=1024, width=1024, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]

with gr.Blocks() as demo:
    gr.Markdown("# HiDiffusion Demo")
    with gr.Tab("SDXL in 2048x2048"):
        with gr.Row():
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)",  # ์ด ๋ถ€๋ถ„์— ๊ธฐ๋ณธ๊ฐ’์„ ์„ค์ •
                visible=False  # ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ์ด ํ•„๋“œ๋ฅผ ์ˆจ๊น€
            )
        btn = gr.Button("Run")
    with gr.Tab("SD1.5 in 1024x1024"):
        with gr.Row():
            prompt_15 = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)",  # ์ด ๋ถ€๋ถ„์— ๊ธฐ๋ณธ๊ฐ’์„ ์„ค์ •
                visible=False  # ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ์ด ํ•„๋“œ๋ฅผ ์ˆจ๊น€
            )
        btn_15 = gr.Button("Run")
    output = gr.Image(label="Result")
    gr.Examples(examples=[
            "a beautiful woman, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a beautiful woman, stewardess uniform attire, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a beautiful woman, Caucasian ethnicity, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a beautiful woman, Black ethnicity, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",        
            "a beautiful woman, Caucasian ethnicity,Business attire, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a beautiful woman, Caucasian ethnicity,casual attire, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a beautiful woman, golf wear attire, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a handsome man, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",      
            "a handsome man, Caucasian ethnicity,uniform attire, full body visible, model pose, suite wear, direct frontal gaze, blue color background, realritics photo, 16k",              
            "a handsome man, Business attire, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a handsome man, Caucasian ethnicity, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a handsome man, Caucasian ethnicity,Business attire, Black ethnicity, full body visible, model pose, direct frontal gaze, white color background, realritics photo, 16k",
            "a handsome man, casual attire, full body visible, model pose, direct frontal gaze, black color background, realritics photo, 16k",              
            "a handsome man, Caucasian ethnicity,golf wear attire, full body visible, model pose, direct frontal gaze, gray color background, realritics photo, 16k"
    ], inputs=[prompt], outputs=[output], fn=run_hidiffusion)
    
    btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output])
    btn_15.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output])
demo.launch()