multimodalart HF staff commited on
Commit
b9509da
·
verified ·
1 Parent(s): 4893869

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -6
app.py CHANGED
@@ -9,6 +9,10 @@ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype
9
  scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
10
  pipe = DiffusionPipeline.from_pretrained(model, vae=vae, scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
11
 
 
 
 
 
12
  #pipe.enable_model_cpu_offload()
13
  pipe.enable_vae_tiling()
14
 
@@ -17,14 +21,28 @@ apply_hidiffusion(pipe)
17
 
18
  @spaces.GPU
19
  def run_hidiffusion(prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)):
20
- return pipe(prompt, guidance_scale=7.5, height=4096, width=4096, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]
21
-
 
 
 
 
 
22
  with gr.Blocks() as demo:
23
- prompt = gr.Textbox()
24
- negative_prompt = gr.Textbox()
25
- btn = gr.Button("Run")
 
 
 
 
 
 
 
 
 
26
  output = gr.Image()
27
 
28
  btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output])
29
-
30
  demo.launch()
 
9
  scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
10
  pipe = DiffusionPipeline.from_pretrained(model, vae=vae, scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
11
 
12
+ model_15 = "runwayml/stable-diffusion-v1-5"
13
+ scheduler_15 = DDIMScheduler.from_pretrained(model_15, subfolder="scheduler")
14
+ pipe_15 = DiffusionPipeline.from_pretrained(model_15, vae=vae, scheduler=scheduler_15, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
15
+
16
  #pipe.enable_model_cpu_offload()
17
  pipe.enable_vae_tiling()
18
 
 
21
 
22
  @spaces.GPU
23
  def run_hidiffusion(prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)):
24
+ return pipe(prompt, guidance_scale=7.5, height=2048, width=2048, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]
25
+
26
+ @spaces.GPU
27
+ def run_hidiffusion_15(prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)):
28
+ return pipe_15(prompt, guidance_scale=7.5, height=1024, width=1024, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]
29
+
30
+
31
  with gr.Blocks() as demo:
32
+ gr.Markdown("# HiDiffusion Demo")
33
+ gr.Markdown("Make Stable Diffusion generated higher resolution images than what it was trained for")
34
+ with gr.Tab("SDXL in 2048x2048"):
35
+ with gr.Row():
36
+ prompt = gr.Textbox(label="Prompt")
37
+ negative_prompt = gr.Textbox(label="Negative Prompt")
38
+ btn = gr.Button("Run")
39
+ with gr.Tab("SD1.5 in 1024x1024"):
40
+ with gr.Row():
41
+ prompt_15 = gr.Textbox(label="Prompt")
42
+ negative_prompt_15 = gr.Textbox(label="Negative Prompt")
43
+ btn_15 = gr.Button("Run")
44
  output = gr.Image()
45
 
46
  btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output])
47
+ btn_15.click(fn=run_hidiffusion, inputs=[prompt_15, negative_prompt_15], outputs=[output])
48
  demo.launch()