File size: 2,275 Bytes
5f8a996
22595de
fea8c5b
5f8a996
 
 
095368e
af68b3c
095368e
 
5f8a996
b9509da
 
 
 
5f8a996
4893869
5f8a996
 
 
 
51a097e
c76773c
b9509da
 
 
 
 
 
 
5f8a996
b9509da
 
 
 
 
 
 
 
 
 
 
 
5f8a996
 
 
b9509da
eb97cd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from hidiffusion import apply_hidiffusion, remove_hidiffusion
from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL
import gradio as gr
import torch
import spaces

model = "stabilityai/stable-diffusion-xl-base-1.0"
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")

model_15 = "runwayml/stable-diffusion-v1-5"
scheduler_15 = DDIMScheduler.from_pretrained(model_15, subfolder="scheduler")
pipe_15 = DiffusionPipeline.from_pretrained(model_15, vae=vae, scheduler=scheduler_15, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")

#pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()

# Apply hidiffusion with a single line of code.
apply_hidiffusion(pipe)

@spaces.GPU
def run_hidiffusion(prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)):
    return pipe(prompt, guidance_scale=7.5, height=2048, width=2048, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]

@spaces.GPU
def run_hidiffusion_15(prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)):
    return pipe_15(prompt, guidance_scale=7.5, height=1024, width=1024, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0]


with gr.Blocks() as demo:
    gr.Markdown("# HiDiffusion Demo")
    gr.Markdown("Make Stable Diffusion generated higher resolution images than what it was trained for")
    with gr.Tab("SDXL in 2048x2048"):
        with gr.Row():
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt")
        btn = gr.Button("Run")
    with gr.Tab("SD1.5 in 1024x1024"):
        with gr.Row():
            prompt_15 = gr.Textbox(label="Prompt")
            negative_prompt_15 = gr.Textbox(label="Negative Prompt")
        btn_15 = gr.Button("Run")
    output = gr.Image()

    btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output])
    btn_15.click(fn=run_hidiffusion, inputs=[prompt_15, negative_prompt_15], outputs=[output])
demo.launch()