Time-Stream / app (19).py
ginipick's picture
Upload app (19).py
ac9d564 verified
raw
history blame
9.62 kB
import os
import uuid
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline, AutoencoderTiny
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.utils import export_to_video
import random
from transformers import pipeline
# λ²ˆμ—­ λͺ¨λΈ λ‘œλ“œ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# ν•œκΈ€ 메뉴 이름 dictionary
korean_labels = {
"Prompt": "ν”„λ‘¬ν”„νŠΈ",
"1st direction to steer": "첫 번째 λ°©ν–₯",
"2nd direction to steer": "두 번째 λ°©ν–₯",
"Strength": "강도",
"Generate directions": "λ°©ν–₯ 생성",
"Generated Images": "μƒμ„±λœ 이미지",
"From 1st to 2nd direction": "첫 λ²ˆμ§Έμ—μ„œ 두 번째 λ°©ν–₯으둜",
"Strip": "이미지 슀트립",
"Looping video": "루프 λΉ„λ””μ˜€",
"Advanced options": "κ³ κΈ‰ μ˜΅μ…˜",
"Num of intermediate images": "쀑간 이미지 수",
"Num iterations for clip directions": "클립 λ°©ν–₯ 반볡 횟수",
"Num inference steps": "μΆ”λ‘  단계 수",
"Guidance scale": "κ°€μ΄λ˜μŠ€ μŠ€μΌ€μΌ",
"Randomize seed": "μ‹œλ“œ λ¬΄μž‘μœ„ν™”",
"Seed": "μ‹œλ“œ"
}
# load pipelines
base_model = "black-forest-labs/FLUX.1-schnell"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
pipe = FluxPipeline.from_pretrained(base_model,
vae=taef1,
torch_dtype=torch.bfloat16)
pipe.transformer.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
# pipe.enable_model_cpu_offload()
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
MAX_SEED = 2**32-1
def save_images_with_unique_filenames(image_list, save_directory):
if not os.path.exists(save_directory):
os.makedirs(save_directory)
paths = []
for image in image_list:
unique_filename = f"{uuid.uuid4()}.png"
file_path = os.path.join(save_directory, unique_filename)
image.save(file_path)
paths.append(file_path)
return paths
def convert_to_centered_scale(num):
if num % 2 == 0: # even
start = -(num // 2 - 1)
end = num // 2
else: # odd
start = -(num // 2)
end = num // 2
return tuple(range(start, end + 1))
def translate_if_korean(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text)[0]['translation_text']
return text
@spaces.GPU(duration=85)
def generate(prompt,
concept_1,
concept_2,
scale,
randomize_seed=True,
seed=42,
recalc_directions=True,
iterations=200,
steps=3,
interm_steps=33,
guidance_scale=3.5,
x_concept_1="", x_concept_2="",
avg_diff_x=None,
total_images=[],
progress=gr.Progress()
):
# ν”„λ‘¬ν”„νŠΈμ™€ 컨셉 λ²ˆμ—­
prompt = translate_if_korean(prompt)
concept_1 = translate_if_korean(concept_1)
concept_2 = translate_if_korean(concept_2)
print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➑️ . scale {scale}, interm steps {interm_steps}")
slider_x = [concept_2, concept_1]
# check if avg diff for directions need to be re-calculated
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
progress(0, desc="Calculating directions...")
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
images = []
high_scale = scale
low_scale = -1 * scale
for i in progress.tqdm(range(interm_steps), desc="Generating images"):
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
image = clip_slider.generate(prompt,
width=768,
height=768,
guidance_scale=guidance_scale,
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
images.append(image)
canvas = Image.new('RGB', (256*interm_steps, 256))
for i, im in enumerate(images):
canvas.paste(im.resize((256,256)), (256 * i, 0))
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
scale_total = convert_to_centered_scale(interm_steps)
scale_min = scale_total[0]
scale_max = scale_total[-1]
scale_middle = scale_total.index(0)
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
avg_diff_x = avg_diff.cpu()
video_path = f"{uuid.uuid4()}.mp4"
print(video_path)
return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
def update_pre_generated_images(slider_value, total_images):
number_images = len(total_images)
if(number_images > 0):
scale_tuple = convert_to_centered_scale(number_images)
return total_images[scale_tuple.index(slider_value)][0]
else:
return None
def reset_recalc_directions():
return True
examples = [["a dog in the park", "winter", "summer", 1.5], ["a house", "USA suburb", "Europe", 2.5], ["a tomato", "rotten", "super fresh", 2.5]]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
total_images = gr.Gallery(visible=False)
avg_diff_x = gr.State()
recalc_directions = gr.State(False)
with gr.Row():
with gr.Column():
with gr.Group():
prompt = gr.Textbox(label=korean_labels["Prompt"], info="μ„€λͺ…ν•  λ‚΄μš©μ„ μž…λ ₯ν•˜μ„Έμš”", placeholder="곡원에 μžˆλŠ” 강아지")
with gr.Row():
concept_1 = gr.Textbox(label=korean_labels["1st direction to steer"], info="μ‹œμž‘ μƒνƒœ", placeholder="겨울")
concept_2 = gr.Textbox(label=korean_labels["2nd direction to steer"], info="μ’…λ£Œ μƒνƒœ", placeholder="여름")
x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label=korean_labels["Strength"], info="각 λ°©ν–₯의 μ΅œλŒ€ 강도 (2.5 이상은 λΆˆμ•ˆμ •)")
submit = gr.Button(korean_labels["Generate directions"])
with gr.Column():
with gr.Group(elem_id="group"):
post_generation_image = gr.Image(label=korean_labels["Generated Images"], type="filepath", elem_id="interactive")
post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label=korean_labels["From 1st to 2nd direction"])
with gr.Row():
with gr.Column(scale=4):
image_seq = gr.Image(label=korean_labels["Strip"], elem_id="strip", height=80)
with gr.Column(scale=2, min_width=100):
output_image = gr.Video(label=korean_labels["Looping video"], elem_id="video", loop=True, autoplay=True)
with gr.Accordion(label=korean_labels["Advanced options"], open=False):
interm_steps = gr.Slider(label=korean_labels["Num of intermediate images"], minimum=3, value=7, maximum=65, step=2)
with gr.Row():
iterations = gr.Slider(label=korean_labels["Num iterations for clip directions"], minimum=0, value=200, maximum=400, step=1)
steps = gr.Slider(label=korean_labels["Num inference steps"], minimum=1, value=3, maximum=4, step=1)
with gr.Row():
guidance_scale = gr.Slider(
label=korean_labels["Guidance scale"],
minimum=0.1,
maximum=10.0,
step=0.1,
value=3.5,
)
with gr.Column():
randomize_seed = gr.Checkbox(True, label=korean_labels["Randomize seed"])
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label=korean_labels["Seed"], interactive=True, randomize=True)
examples_gradio = gr.Examples(
examples=examples,
inputs=[prompt, concept_1, concept_2, x],
fn=generate,
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed],
cache_examples="lazy"
)
submit.click(
fn=generate,
inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed]
)
iterations.change(
fn=reset_recalc_directions,
outputs=[recalc_directions]
)
seed.change(
fn=reset_recalc_directions,
outputs=[recalc_directions]
)
post_generation_slider.change(
fn=update_pre_generated_images,
inputs=[post_generation_slider, total_images],
outputs=[post_generation_image],
queue=False,
show_progress="hidden",
concurrency_limit=None
)
if __name__ == "__main__":
demo.launch()