Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import uuid | |
import gradio as gr | |
import spaces | |
from clip_slider_pipeline import CLIPSliderFlux | |
from diffusers import FluxPipeline, AutoencoderTiny | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from diffusers.utils import load_image | |
from diffusers.utils import export_to_video | |
import random | |
from transformers import pipeline | |
# λ²μ λͺ¨λΈ λ‘λ | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
# νκΈ λ©λ΄ μ΄λ¦ dictionary | |
korean_labels = { | |
"Prompt": "ν둬ννΈ", | |
"1st direction to steer": "첫 λ²μ§Έ λ°©ν₯", | |
"2nd direction to steer": "λ λ²μ§Έ λ°©ν₯", | |
"Strength": "κ°λ", | |
"Generate directions": "λ°©ν₯ μμ±", | |
"Generated Images": "μμ±λ μ΄λ―Έμ§", | |
"From 1st to 2nd direction": "첫 λ²μ§Έμμ λ λ²μ§Έ λ°©ν₯μΌλ‘", | |
"Strip": "μ΄λ―Έμ§ μ€νΈλ¦½", | |
"Looping video": "루ν λΉλμ€", | |
"Advanced options": "κ³ κΈ μ΅μ ", | |
"Num of intermediate images": "μ€κ° μ΄λ―Έμ§ μ", | |
"Num iterations for clip directions": "ν΄λ¦½ λ°©ν₯ λ°λ³΅ νμ", | |
"Num inference steps": "μΆλ‘ λ¨κ³ μ", | |
"Guidance scale": "κ°μ΄λμ€ μ€μΌμΌ", | |
"Randomize seed": "μλ 무μμν", | |
"Seed": "μλ" | |
} | |
# load pipelines | |
base_model = "black-forest-labs/FLUX.1-schnell" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") | |
pipe = FluxPipeline.from_pretrained(base_model, | |
vae=taef1, | |
torch_dtype=torch.bfloat16) | |
pipe.transformer.to(memory_format=torch.channels_last) | |
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
# pipe.enable_model_cpu_offload() | |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) | |
MAX_SEED = 2**32-1 | |
def save_images_with_unique_filenames(image_list, save_directory): | |
if not os.path.exists(save_directory): | |
os.makedirs(save_directory) | |
paths = [] | |
for image in image_list: | |
unique_filename = f"{uuid.uuid4()}.png" | |
file_path = os.path.join(save_directory, unique_filename) | |
image.save(file_path) | |
paths.append(file_path) | |
return paths | |
def convert_to_centered_scale(num): | |
if num % 2 == 0: # even | |
start = -(num // 2 - 1) | |
end = num // 2 | |
else: # odd | |
start = -(num // 2) | |
end = num // 2 | |
return tuple(range(start, end + 1)) | |
def translate_if_korean(text): | |
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text): | |
return translator(text)[0]['translation_text'] | |
return text | |
def generate(prompt, | |
concept_1, | |
concept_2, | |
scale, | |
randomize_seed=True, | |
seed=42, | |
recalc_directions=True, | |
iterations=200, | |
steps=3, | |
interm_steps=33, | |
guidance_scale=3.5, | |
x_concept_1="", x_concept_2="", | |
avg_diff_x=None, | |
total_images=[], | |
progress=gr.Progress() | |
): | |
# ν둬ννΈμ 컨μ λ²μ | |
prompt = translate_if_korean(prompt) | |
concept_1 = translate_if_korean(concept_1) | |
concept_2 = translate_if_korean(concept_2) | |
print(f"Prompt: {prompt}, β {concept_2}, {concept_1} β‘οΈ . scale {scale}, interm steps {interm_steps}") | |
slider_x = [concept_2, concept_1] | |
# check if avg diff for directions need to be re-calculated | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: | |
progress(0, desc="Calculating directions...") | |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) | |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
images = [] | |
high_scale = scale | |
low_scale = -1 * scale | |
for i in progress.tqdm(range(interm_steps), desc="Generating images"): | |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) | |
image = clip_slider.generate(prompt, | |
width=768, | |
height=768, | |
guidance_scale=guidance_scale, | |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) | |
images.append(image) | |
canvas = Image.new('RGB', (256*interm_steps, 256)) | |
for i, im in enumerate(images): | |
canvas.paste(im.resize((256,256)), (256 * i, 0)) | |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" | |
scale_total = convert_to_centered_scale(interm_steps) | |
scale_min = scale_total[0] | |
scale_max = scale_total[-1] | |
scale_middle = scale_total.index(0) | |
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) | |
avg_diff_x = avg_diff.cpu() | |
video_path = f"{uuid.uuid4()}.mp4" | |
print(video_path) | |
return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed | |
def update_pre_generated_images(slider_value, total_images): | |
number_images = len(total_images) | |
if(number_images > 0): | |
scale_tuple = convert_to_centered_scale(number_images) | |
return total_images[scale_tuple.index(slider_value)][0] | |
else: | |
return None | |
def reset_recalc_directions(): | |
return True | |
examples = [["a dog in the park", "winter", "summer", 1.5], ["a house", "USA suburb", "Europe", 2.5], ["a tomato", "rotten", "super fresh", 2.5]] | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: | |
x_concept_1 = gr.State("") | |
x_concept_2 = gr.State("") | |
total_images = gr.Gallery(visible=False) | |
avg_diff_x = gr.State() | |
recalc_directions = gr.State(False) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
prompt = gr.Textbox(label=korean_labels["Prompt"], info="μ€λͺ ν λ΄μ©μ μ λ ₯νμΈμ", placeholder="곡μμ μλ κ°μμ§") | |
with gr.Row(): | |
concept_1 = gr.Textbox(label=korean_labels["1st direction to steer"], info="μμ μν", placeholder="겨μΈ") | |
concept_2 = gr.Textbox(label=korean_labels["2nd direction to steer"], info="μ’ λ£ μν", placeholder="μ¬λ¦") | |
x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label=korean_labels["Strength"], info="κ° λ°©ν₯μ μ΅λ κ°λ (2.5 μ΄μμ λΆμμ )") | |
submit = gr.Button(korean_labels["Generate directions"]) | |
with gr.Column(): | |
with gr.Group(elem_id="group"): | |
post_generation_image = gr.Image(label=korean_labels["Generated Images"], type="filepath", elem_id="interactive") | |
post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label=korean_labels["From 1st to 2nd direction"]) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
image_seq = gr.Image(label=korean_labels["Strip"], elem_id="strip", height=80) | |
with gr.Column(scale=2, min_width=100): | |
output_image = gr.Video(label=korean_labels["Looping video"], elem_id="video", loop=True, autoplay=True) | |
with gr.Accordion(label=korean_labels["Advanced options"], open=False): | |
interm_steps = gr.Slider(label=korean_labels["Num of intermediate images"], minimum=3, value=7, maximum=65, step=2) | |
with gr.Row(): | |
iterations = gr.Slider(label=korean_labels["Num iterations for clip directions"], minimum=0, value=200, maximum=400, step=1) | |
steps = gr.Slider(label=korean_labels["Num inference steps"], minimum=1, value=3, maximum=4, step=1) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label=korean_labels["Guidance scale"], | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=3.5, | |
) | |
with gr.Column(): | |
randomize_seed = gr.Checkbox(True, label=korean_labels["Randomize seed"]) | |
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label=korean_labels["Seed"], interactive=True, randomize=True) | |
examples_gradio = gr.Examples( | |
examples=examples, | |
inputs=[prompt, concept_1, concept_2, x], | |
fn=generate, | |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed], | |
cache_examples="lazy" | |
) | |
submit.click( | |
fn=generate, | |
inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images], | |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed] | |
) | |
iterations.change( | |
fn=reset_recalc_directions, | |
outputs=[recalc_directions] | |
) | |
seed.change( | |
fn=reset_recalc_directions, | |
outputs=[recalc_directions] | |
) | |
post_generation_slider.change( | |
fn=update_pre_generated_images, | |
inputs=[post_generation_slider, total_images], | |
outputs=[post_generation_image], | |
queue=False, | |
show_progress="hidden", | |
concurrency_limit=None | |
) | |
if __name__ == "__main__": | |
demo.launch() |