ginipick commited on
Commit
ac9d564
Β·
verified Β·
1 Parent(s): e6d3f1b

Upload app (19).py

Browse files
Files changed (1) hide show
  1. app (19).py +237 -0
app (19).py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import uuid
3
+ import gradio as gr
4
+ import spaces
5
+ from clip_slider_pipeline import CLIPSliderFlux
6
+ from diffusers import FluxPipeline, AutoencoderTiny
7
+ import torch
8
+ import numpy as np
9
+ import cv2
10
+ from PIL import Image
11
+ from diffusers.utils import load_image
12
+ from diffusers.utils import export_to_video
13
+ import random
14
+ from transformers import pipeline
15
+
16
+ # λ²ˆμ—­ λͺ¨λΈ λ‘œλ“œ
17
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
18
+
19
+ # ν•œκΈ€ 메뉴 이름 dictionary
20
+ korean_labels = {
21
+ "Prompt": "ν”„λ‘¬ν”„νŠΈ",
22
+ "1st direction to steer": "첫 번째 λ°©ν–₯",
23
+ "2nd direction to steer": "두 번째 λ°©ν–₯",
24
+ "Strength": "강도",
25
+ "Generate directions": "λ°©ν–₯ 생성",
26
+ "Generated Images": "μƒμ„±λœ 이미지",
27
+ "From 1st to 2nd direction": "첫 λ²ˆμ§Έμ—μ„œ 두 번째 λ°©ν–₯으둜",
28
+ "Strip": "이미지 슀트립",
29
+ "Looping video": "루프 λΉ„λ””μ˜€",
30
+ "Advanced options": "κ³ κΈ‰ μ˜΅μ…˜",
31
+ "Num of intermediate images": "쀑간 이미지 수",
32
+ "Num iterations for clip directions": "클립 λ°©ν–₯ 반볡 횟수",
33
+ "Num inference steps": "μΆ”λ‘  단계 수",
34
+ "Guidance scale": "κ°€μ΄λ˜μŠ€ μŠ€μΌ€μΌ",
35
+ "Randomize seed": "μ‹œλ“œ λ¬΄μž‘μœ„ν™”",
36
+ "Seed": "μ‹œλ“œ"
37
+ }
38
+
39
+ # load pipelines
40
+ base_model = "black-forest-labs/FLUX.1-schnell"
41
+
42
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
43
+ pipe = FluxPipeline.from_pretrained(base_model,
44
+ vae=taef1,
45
+ torch_dtype=torch.bfloat16)
46
+
47
+ pipe.transformer.to(memory_format=torch.channels_last)
48
+ #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
49
+ # pipe.enable_model_cpu_offload()
50
+ clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
51
+
52
+ MAX_SEED = 2**32-1
53
+
54
+ def save_images_with_unique_filenames(image_list, save_directory):
55
+ if not os.path.exists(save_directory):
56
+ os.makedirs(save_directory)
57
+
58
+ paths = []
59
+ for image in image_list:
60
+ unique_filename = f"{uuid.uuid4()}.png"
61
+ file_path = os.path.join(save_directory, unique_filename)
62
+
63
+ image.save(file_path)
64
+ paths.append(file_path)
65
+
66
+ return paths
67
+
68
+ def convert_to_centered_scale(num):
69
+ if num % 2 == 0: # even
70
+ start = -(num // 2 - 1)
71
+ end = num // 2
72
+ else: # odd
73
+ start = -(num // 2)
74
+ end = num // 2
75
+ return tuple(range(start, end + 1))
76
+
77
+ def translate_if_korean(text):
78
+ if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
79
+ return translator(text)[0]['translation_text']
80
+ return text
81
+
82
+ @spaces.GPU(duration=85)
83
+ def generate(prompt,
84
+ concept_1,
85
+ concept_2,
86
+ scale,
87
+ randomize_seed=True,
88
+ seed=42,
89
+ recalc_directions=True,
90
+ iterations=200,
91
+ steps=3,
92
+ interm_steps=33,
93
+ guidance_scale=3.5,
94
+ x_concept_1="", x_concept_2="",
95
+ avg_diff_x=None,
96
+ total_images=[],
97
+ progress=gr.Progress()
98
+ ):
99
+ # ν”„λ‘¬ν”„νŠΈμ™€ 컨셉 λ²ˆμ—­
100
+ prompt = translate_if_korean(prompt)
101
+ concept_1 = translate_if_korean(concept_1)
102
+ concept_2 = translate_if_korean(concept_2)
103
+
104
+ print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➑️ . scale {scale}, interm steps {interm_steps}")
105
+ slider_x = [concept_2, concept_1]
106
+ # check if avg diff for directions need to be re-calculated
107
+ if randomize_seed:
108
+ seed = random.randint(0, MAX_SEED)
109
+
110
+ if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
111
+ progress(0, desc="Calculating directions...")
112
+ avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
113
+ x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
114
+
115
+ images = []
116
+ high_scale = scale
117
+ low_scale = -1 * scale
118
+ for i in progress.tqdm(range(interm_steps), desc="Generating images"):
119
+ cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
120
+ image = clip_slider.generate(prompt,
121
+ width=768,
122
+ height=768,
123
+ guidance_scale=guidance_scale,
124
+ scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
125
+ images.append(image)
126
+ canvas = Image.new('RGB', (256*interm_steps, 256))
127
+ for i, im in enumerate(images):
128
+ canvas.paste(im.resize((256,256)), (256 * i, 0))
129
+
130
+ comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
131
+
132
+ scale_total = convert_to_centered_scale(interm_steps)
133
+ scale_min = scale_total[0]
134
+ scale_max = scale_total[-1]
135
+ scale_middle = scale_total.index(0)
136
+ post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
137
+ avg_diff_x = avg_diff.cpu()
138
+
139
+ video_path = f"{uuid.uuid4()}.mp4"
140
+ print(video_path)
141
+ return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
142
+
143
+ def update_pre_generated_images(slider_value, total_images):
144
+ number_images = len(total_images)
145
+ if(number_images > 0):
146
+ scale_tuple = convert_to_centered_scale(number_images)
147
+ return total_images[scale_tuple.index(slider_value)][0]
148
+ else:
149
+ return None
150
+
151
+ def reset_recalc_directions():
152
+ return True
153
+
154
+ examples = [["a dog in the park", "winter", "summer", 1.5], ["a house", "USA suburb", "Europe", 2.5], ["a tomato", "rotten", "super fresh", 2.5]]
155
+
156
+ css = """
157
+ footer {
158
+ visibility: hidden;
159
+ }
160
+ """
161
+
162
+ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
163
+ x_concept_1 = gr.State("")
164
+ x_concept_2 = gr.State("")
165
+ total_images = gr.Gallery(visible=False)
166
+
167
+ avg_diff_x = gr.State()
168
+
169
+ recalc_directions = gr.State(False)
170
+
171
+ with gr.Row():
172
+ with gr.Column():
173
+ with gr.Group():
174
+ prompt = gr.Textbox(label=korean_labels["Prompt"], info="μ„€λͺ…ν•  λ‚΄μš©μ„ μž…λ ₯ν•˜μ„Έμš”", placeholder="곡원에 μžˆλŠ” 강아지")
175
+ with gr.Row():
176
+ concept_1 = gr.Textbox(label=korean_labels["1st direction to steer"], info="μ‹œμž‘ μƒνƒœ", placeholder="겨울")
177
+ concept_2 = gr.Textbox(label=korean_labels["2nd direction to steer"], info="μ’…λ£Œ μƒνƒœ", placeholder="여름")
178
+ x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label=korean_labels["Strength"], info="각 λ°©ν–₯의 μ΅œλŒ€ 강도 (2.5 이상은 λΆˆμ•ˆμ •)")
179
+ submit = gr.Button(korean_labels["Generate directions"])
180
+ with gr.Column():
181
+ with gr.Group(elem_id="group"):
182
+ post_generation_image = gr.Image(label=korean_labels["Generated Images"], type="filepath", elem_id="interactive")
183
+ post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label=korean_labels["From 1st to 2nd direction"])
184
+ with gr.Row():
185
+ with gr.Column(scale=4):
186
+ image_seq = gr.Image(label=korean_labels["Strip"], elem_id="strip", height=80)
187
+ with gr.Column(scale=2, min_width=100):
188
+ output_image = gr.Video(label=korean_labels["Looping video"], elem_id="video", loop=True, autoplay=True)
189
+ with gr.Accordion(label=korean_labels["Advanced options"], open=False):
190
+ interm_steps = gr.Slider(label=korean_labels["Num of intermediate images"], minimum=3, value=7, maximum=65, step=2)
191
+ with gr.Row():
192
+ iterations = gr.Slider(label=korean_labels["Num iterations for clip directions"], minimum=0, value=200, maximum=400, step=1)
193
+ steps = gr.Slider(label=korean_labels["Num inference steps"], minimum=1, value=3, maximum=4, step=1)
194
+ with gr.Row():
195
+ guidance_scale = gr.Slider(
196
+ label=korean_labels["Guidance scale"],
197
+ minimum=0.1,
198
+ maximum=10.0,
199
+ step=0.1,
200
+ value=3.5,
201
+ )
202
+ with gr.Column():
203
+ randomize_seed = gr.Checkbox(True, label=korean_labels["Randomize seed"])
204
+ seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label=korean_labels["Seed"], interactive=True, randomize=True)
205
+
206
+ examples_gradio = gr.Examples(
207
+ examples=examples,
208
+ inputs=[prompt, concept_1, concept_2, x],
209
+ fn=generate,
210
+ outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed],
211
+ cache_examples="lazy"
212
+ )
213
+
214
+ submit.click(
215
+ fn=generate,
216
+ inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
217
+ outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed]
218
+ )
219
+ iterations.change(
220
+ fn=reset_recalc_directions,
221
+ outputs=[recalc_directions]
222
+ )
223
+ seed.change(
224
+ fn=reset_recalc_directions,
225
+ outputs=[recalc_directions]
226
+ )
227
+ post_generation_slider.change(
228
+ fn=update_pre_generated_images,
229
+ inputs=[post_generation_slider, total_images],
230
+ outputs=[post_generation_image],
231
+ queue=False,
232
+ show_progress="hidden",
233
+ concurrency_limit=None
234
+ )
235
+
236
+ if __name__ == "__main__":
237
+ demo.launch()