File size: 5,982 Bytes
86be4e6
 
2b8b77d
 
1eb5467
e1fcf74
2b8b77d
 
 
 
e2371c5
f1c3cc1
3c2c999
e6d3f1b
 
b365a93
8570e29
e6d3f1b
b365a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d3f1b
003a054
b365a93
9d731d3
ed049a0
 
 
 
 
 
b365a93
 
f217e4d
 
d96484a
d5a8945
7b9e6e4
718ba97
f217e4d
ccc38b8
 
7cd66c7
b365a93
 
 
7cd66c7
b365a93
 
 
 
 
 
 
 
 
 
 
 
 
ccc38b8
993abb8
b365a93
 
 
 
 
 
 
 
c36d490
518583e
b365a93
 
 
518583e
b365a93
 
 
 
 
 
 
 
 
 
10c555d
b365a93
 
 
 
 
 
 
 
 
 
10c555d
 
b365a93
10c555d
 
 
 
 
 
b365a93
 
 
 
 
 
 
 
 
 
 
 
 
 
e514550
 
7c696fc
 
 
b365a93
 
7c696fc
10c555d
e514550
b365a93
 
cd2465c
50d6862
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import uuid
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline, AutoencoderTiny
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.utils import export_to_video
import random
from transformers import pipeline

# Translation model load
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

# English menu labels
english_labels = {
    "Prompt": "Prompt",
    "1st direction to steer": "1st Direction",
    "2nd direction to steer": "2nd Direction",
    "Strength": "Strength",
    "Generate directions": "Generate Directions",
    "Generated Images": "Generated Images",
    "From 1st to 2nd direction": "From 1st to 2nd Direction",
    "Strip": "Image Strip",
    "Looping video": "Looping Video",
    "Advanced options": "Advanced Options",
    "Num of intermediate images": "Number of Intermediate Images",
    "Num iterations for clip directions": "Number of CLIP Direction Iterations",
    "Num inference steps": "Number of Inference Steps",
    "Guidance scale": "Guidance Scale",
    "Randomize seed": "Randomize Seed",
    "Seed": "Seed"
}

# [Rest of the imports and pipeline setup remains the same...]

css = """
footer {
    visibility: hidden;
}
"""


with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    x_concept_1 = gr.State("")
    x_concept_2 = gr.State("")
    total_images = gr.Gallery(visible=False)

    avg_diff_x = gr.State()
    recalc_directions = gr.State(False)
    
    with gr.Row():
        with gr.Column():
            with gr.Group():
                prompt = gr.Textbox(label=english_labels["Prompt"], 
                                  info="Enter the description", 
                                  placeholder="A dog in the park")
                with gr.Row():
                    concept_1 = gr.Textbox(label=english_labels["1st direction to steer"], 
                                         info="Initial state", 
                                         placeholder="winter")
                    concept_2 = gr.Textbox(label=english_labels["2nd direction to steer"], 
                                         info="Final state", 
                                         placeholder="summer")
            x = gr.Slider(minimum=0, 
                         value=1.75, 
                         step=0.1, 
                         maximum=4.0, 
                         label=english_labels["Strength"], 
                         info="Maximum strength for each direction (above 2.5 may be unstable)")
            submit = gr.Button(english_labels["Generate directions"])
        with gr.Column():
            with gr.Group(elem_id="group"):
                post_generation_image = gr.Image(label=english_labels["Generated Images"], 
                                               type="filepath", 
                                               elem_id="interactive")
                post_generation_slider = gr.Slider(minimum=-10, 
                                                 maximum=10, 
                                                 value=0, 
                                                 step=1, 
                                                 label=english_labels["From 1st to 2nd direction"])
    with gr.Row():
        with gr.Column(scale=4):
            image_seq = gr.Image(label=english_labels["Strip"], 
                               elem_id="strip", 
                               height=80)
        with gr.Column(scale=2, min_width=100):
            output_image = gr.Video(label=english_labels["Looping video"], 
                                  elem_id="video", 
                                  loop=True, 
                                  autoplay=True)
    with gr.Accordion(label=english_labels["Advanced options"], open=False):
        interm_steps = gr.Slider(label=english_labels["Num of intermediate images"], 
                               minimum=3, 
                               value=7, 
                               maximum=65, 
                               step=2)
        with gr.Row():
            iterations = gr.Slider(label=english_labels["Num iterations for clip directions"], 
                                 minimum=0, 
                                 value=200, 
                                 maximum=400, 
                                 step=1)
            steps = gr.Slider(label=english_labels["Num inference steps"], 
                            minimum=1, 
                            value=3, 
                            maximum=4, 
                            step=1)
        with gr.Row():
            guidance_scale = gr.Slider(
                label=english_labels["Guidance scale"],
                minimum=0.1,
                maximum=10.0,
                step=0.1,
                value=3.5,
            )
            with gr.Column():
                randomize_seed = gr.Checkbox(True, label=english_labels["Randomize seed"])
                seed = gr.Slider(minimum=0, 
                               maximum=MAX_SEED, 
                               step=1, 
                               label=english_labels["Seed"], 
                               interactive=True, 
                               randomize=True)

    # Updated examples with English text
    examples = [
        ["flower in mountain", "spring", "winter", 1.5],
        ["man", "baby", "elderly", 2.5],
        ["a tomato", "super fresh", "rotten", 2.5]
    ]

    examples_gradio = gr.Examples(
        examples=examples,
        inputs=[prompt, concept_1, concept_2, x],
        fn=generate,
        outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, 
                post_generation_image, post_generation_slider, seed],
        cache_examples="lazy"
    )

    # [Rest of the event handlers remain the same...]

if __name__ == "__main__":
    demo.launch()