Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,982 Bytes
86be4e6 2b8b77d 1eb5467 e1fcf74 2b8b77d e2371c5 f1c3cc1 3c2c999 e6d3f1b b365a93 8570e29 e6d3f1b b365a93 e6d3f1b 003a054 b365a93 9d731d3 ed049a0 b365a93 f217e4d d96484a d5a8945 7b9e6e4 718ba97 f217e4d ccc38b8 7cd66c7 b365a93 7cd66c7 b365a93 ccc38b8 993abb8 b365a93 c36d490 518583e b365a93 518583e b365a93 10c555d b365a93 10c555d b365a93 10c555d b365a93 e514550 7c696fc b365a93 7c696fc 10c555d e514550 b365a93 cd2465c 50d6862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import uuid
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline, AutoencoderTiny
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.utils import export_to_video
import random
from transformers import pipeline
# Translation model load
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# English menu labels
english_labels = {
"Prompt": "Prompt",
"1st direction to steer": "1st Direction",
"2nd direction to steer": "2nd Direction",
"Strength": "Strength",
"Generate directions": "Generate Directions",
"Generated Images": "Generated Images",
"From 1st to 2nd direction": "From 1st to 2nd Direction",
"Strip": "Image Strip",
"Looping video": "Looping Video",
"Advanced options": "Advanced Options",
"Num of intermediate images": "Number of Intermediate Images",
"Num iterations for clip directions": "Number of CLIP Direction Iterations",
"Num inference steps": "Number of Inference Steps",
"Guidance scale": "Guidance Scale",
"Randomize seed": "Randomize Seed",
"Seed": "Seed"
}
# [Rest of the imports and pipeline setup remains the same...]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
total_images = gr.Gallery(visible=False)
avg_diff_x = gr.State()
recalc_directions = gr.State(False)
with gr.Row():
with gr.Column():
with gr.Group():
prompt = gr.Textbox(label=english_labels["Prompt"],
info="Enter the description",
placeholder="A dog in the park")
with gr.Row():
concept_1 = gr.Textbox(label=english_labels["1st direction to steer"],
info="Initial state",
placeholder="winter")
concept_2 = gr.Textbox(label=english_labels["2nd direction to steer"],
info="Final state",
placeholder="summer")
x = gr.Slider(minimum=0,
value=1.75,
step=0.1,
maximum=4.0,
label=english_labels["Strength"],
info="Maximum strength for each direction (above 2.5 may be unstable)")
submit = gr.Button(english_labels["Generate directions"])
with gr.Column():
with gr.Group(elem_id="group"):
post_generation_image = gr.Image(label=english_labels["Generated Images"],
type="filepath",
elem_id="interactive")
post_generation_slider = gr.Slider(minimum=-10,
maximum=10,
value=0,
step=1,
label=english_labels["From 1st to 2nd direction"])
with gr.Row():
with gr.Column(scale=4):
image_seq = gr.Image(label=english_labels["Strip"],
elem_id="strip",
height=80)
with gr.Column(scale=2, min_width=100):
output_image = gr.Video(label=english_labels["Looping video"],
elem_id="video",
loop=True,
autoplay=True)
with gr.Accordion(label=english_labels["Advanced options"], open=False):
interm_steps = gr.Slider(label=english_labels["Num of intermediate images"],
minimum=3,
value=7,
maximum=65,
step=2)
with gr.Row():
iterations = gr.Slider(label=english_labels["Num iterations for clip directions"],
minimum=0,
value=200,
maximum=400,
step=1)
steps = gr.Slider(label=english_labels["Num inference steps"],
minimum=1,
value=3,
maximum=4,
step=1)
with gr.Row():
guidance_scale = gr.Slider(
label=english_labels["Guidance scale"],
minimum=0.1,
maximum=10.0,
step=0.1,
value=3.5,
)
with gr.Column():
randomize_seed = gr.Checkbox(True, label=english_labels["Randomize seed"])
seed = gr.Slider(minimum=0,
maximum=MAX_SEED,
step=1,
label=english_labels["Seed"],
interactive=True,
randomize=True)
# Updated examples with English text
examples = [
["flower in mountain", "spring", "winter", 1.5],
["man", "baby", "elderly", 2.5],
["a tomato", "super fresh", "rotten", 2.5]
]
examples_gradio = gr.Examples(
examples=examples,
inputs=[prompt, concept_1, concept_2, x],
fn=generate,
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images,
post_generation_image, post_generation_slider, seed],
cache_examples="lazy"
)
# [Rest of the event handlers remain the same...]
if __name__ == "__main__":
demo.launch() |