ginipick commited on
Commit
b365a93
·
verified ·
1 Parent(s): 151e263

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -174
app.py CHANGED
@@ -13,143 +13,30 @@ from diffusers.utils import export_to_video
13
  import random
14
  from transformers import pipeline
15
 
16
- # 번역 모델 로드
17
  translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
18
 
19
- # 한글 메뉴 이름 dictionary
20
- korean_labels = {
21
- "Prompt": "프롬프트",
22
- "1st direction to steer": " 번째 방향",
23
- "2nd direction to steer": " 번째 방향",
24
- "Strength": "강도",
25
- "Generate directions": "방향 생성",
26
- "Generated Images": "생성된 이미지",
27
- "From 1st to 2nd direction": " 번째에서 번째 방향으로",
28
- "Strip": "이미지 스트립",
29
- "Looping video": "루프 비디오",
30
- "Advanced options": "고급 옵션",
31
- "Num of intermediate images": "중간 이미지 ",
32
- "Num iterations for clip directions": "클립 방향 반복 횟수",
33
- "Num inference steps": "추론 단계 ",
34
- "Guidance scale": "가이던스 스케일",
35
- "Randomize seed": "시드 무작위화",
36
- "Seed": "시드"
37
  }
38
 
39
- # load pipelines
40
- base_model = "black-forest-labs/FLUX.1-schnell"
41
-
42
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
43
- pipe = FluxPipeline.from_pretrained(base_model,
44
- vae=taef1,
45
- torch_dtype=torch.bfloat16)
46
-
47
- pipe.transformer.to(memory_format=torch.channels_last)
48
- clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
49
-
50
- MAX_SEED = 2**32-1
51
-
52
- def save_images_with_unique_filenames(image_list, save_directory):
53
- if not os.path.exists(save_directory):
54
- os.makedirs(save_directory)
55
-
56
- paths = []
57
- for image in image_list:
58
- unique_filename = f"{uuid.uuid4()}.png"
59
- file_path = os.path.join(save_directory, unique_filename)
60
-
61
- image.save(file_path)
62
- paths.append(file_path)
63
-
64
- return paths
65
-
66
- def convert_to_centered_scale(num):
67
- if num % 2 == 0: # even
68
- start = -(num // 2 - 1)
69
- end = num // 2
70
- else: # odd
71
- start = -(num // 2)
72
- end = num // 2
73
- return tuple(range(start, end + 1))
74
-
75
- def translate_if_korean(text):
76
- if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
77
- return translator(text)[0]['translation_text']
78
- return text
79
-
80
- @spaces.GPU(duration=85)
81
- def generate(prompt,
82
- concept_1,
83
- concept_2,
84
- scale,
85
- randomize_seed=True,
86
- seed=42,
87
- recalc_directions=True,
88
- iterations=200,
89
- steps=3,
90
- interm_steps=33,
91
- guidance_scale=3.5,
92
- x_concept_1="", x_concept_2="",
93
- avg_diff_x=None,
94
- total_images=[],
95
- progress=gr.Progress()
96
- ):
97
- # 프롬프트와 컨셉 번역
98
- prompt = translate_if_korean(prompt)
99
- concept_1 = translate_if_korean(concept_1)
100
- concept_2 = translate_if_korean(concept_2)
101
-
102
- print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}")
103
- slider_x = [concept_2, concept_1]
104
- # check if avg diff for directions need to be re-calculated
105
- if randomize_seed:
106
- seed = random.randint(0, MAX_SEED)
107
-
108
- if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
109
- progress(0, desc="Calculating directions...")
110
- avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
111
- x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
112
-
113
- images = []
114
- high_scale = scale
115
- low_scale = -1 * scale
116
- for i in progress.tqdm(range(interm_steps), desc="Generating images"):
117
- cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
118
- image = clip_slider.generate(prompt,
119
- width=768,
120
- height=768,
121
- guidance_scale=guidance_scale,
122
- scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
123
- images.append(image)
124
- canvas = Image.new('RGB', (256*interm_steps, 256))
125
- for i, im in enumerate(images):
126
- canvas.paste(im.resize((256,256)), (256 * i, 0))
127
-
128
- comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
129
-
130
- scale_total = convert_to_centered_scale(interm_steps)
131
- scale_min = scale_total[0]
132
- scale_max = scale_total[-1]
133
- scale_middle = scale_total.index(0)
134
- post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
135
- avg_diff_x = avg_diff.cpu()
136
-
137
- video_path = f"{uuid.uuid4()}.mp4"
138
- print(video_path)
139
- return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
140
-
141
- def update_pre_generated_images(slider_value, total_images):
142
- number_images = len(total_images)
143
- if(number_images > 0):
144
- scale_tuple = convert_to_centered_scale(number_images)
145
- return total_images[scale_tuple.index(slider_value)][0]
146
- else:
147
- return None
148
-
149
- def reset_recalc_directions():
150
- return True
151
-
152
- examples = [["flower in mountain", "spring", "winter", 1.5], ["남자", "아기", "노인", 2.5], ["a tomato", "super fresh", "rotten", 2.5]]
153
 
154
  css = """
155
  footer {
@@ -157,79 +44,106 @@ footer {
157
  }
158
  """
159
 
160
- with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
 
161
  x_concept_1 = gr.State("")
162
  x_concept_2 = gr.State("")
163
  total_images = gr.Gallery(visible=False)
164
 
165
  avg_diff_x = gr.State()
166
-
167
  recalc_directions = gr.State(False)
168
 
169
  with gr.Row():
170
  with gr.Column():
171
  with gr.Group():
172
- prompt = gr.Textbox(label=korean_labels["Prompt"], info="설명할 내용을 입력하세요", placeholder="공원에 있는 강아지")
 
 
173
  with gr.Row():
174
- concept_1 = gr.Textbox(label=korean_labels["1st direction to steer"], info="시작 상태", placeholder="겨울")
175
- concept_2 = gr.Textbox(label=korean_labels["2nd direction to steer"], info="종료 상태", placeholder="여름")
176
- x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label=korean_labels["Strength"], info="각 방향의 최대 강도 (2.5 이상은 불안정)")
177
- submit = gr.Button(korean_labels["Generate directions"])
 
 
 
 
 
 
 
 
 
178
  with gr.Column():
179
  with gr.Group(elem_id="group"):
180
- post_generation_image = gr.Image(label=korean_labels["Generated Images"], type="filepath", elem_id="interactive")
181
- post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label=korean_labels["From 1st to 2nd direction"])
 
 
 
 
 
 
182
  with gr.Row():
183
  with gr.Column(scale=4):
184
- image_seq = gr.Image(label=korean_labels["Strip"], elem_id="strip", height=80)
 
 
185
  with gr.Column(scale=2, min_width=100):
186
- output_image = gr.Video(label=korean_labels["Looping video"], elem_id="video", loop=True, autoplay=True)
187
- with gr.Accordion(label=korean_labels["Advanced options"], open=False):
188
- interm_steps = gr.Slider(label=korean_labels["Num of intermediate images"], minimum=3, value=7, maximum=65, step=2)
 
 
 
 
 
 
 
189
  with gr.Row():
190
- iterations = gr.Slider(label=korean_labels["Num iterations for clip directions"], minimum=0, value=200, maximum=400, step=1)
191
- steps = gr.Slider(label=korean_labels["Num inference steps"], minimum=1, value=3, maximum=4, step=1)
 
 
 
 
 
 
 
 
192
  with gr.Row():
193
  guidance_scale = gr.Slider(
194
- label=korean_labels["Guidance scale"],
195
  minimum=0.1,
196
  maximum=10.0,
197
  step=0.1,
198
  value=3.5,
199
  )
200
  with gr.Column():
201
- randomize_seed = gr.Checkbox(True, label=korean_labels["Randomize seed"])
202
- seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label=korean_labels["Seed"], interactive=True, randomize=True)
 
 
 
 
 
 
 
 
 
 
 
 
203
 
204
  examples_gradio = gr.Examples(
205
  examples=examples,
206
  inputs=[prompt, concept_1, concept_2, x],
207
  fn=generate,
208
- outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed],
 
209
  cache_examples="lazy"
210
  )
211
 
212
- submit.click(
213
- fn=generate,
214
- inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
215
- outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed]
216
- )
217
- iterations.change(
218
- fn=reset_recalc_directions,
219
- outputs=[recalc_directions]
220
- )
221
- seed.change(
222
- fn=reset_recalc_directions,
223
- outputs=[recalc_directions]
224
- )
225
- post_generation_slider.change(
226
- fn=update_pre_generated_images,
227
- inputs=[post_generation_slider, total_images],
228
- outputs=[post_generation_image],
229
- queue=False,
230
- show_progress="hidden",
231
- concurrency_limit=None
232
- )
233
-
234
  if __name__ == "__main__":
235
  demo.launch()
 
13
  import random
14
  from transformers import pipeline
15
 
16
+ # Translation model load
17
  translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
18
 
19
+ # English menu labels
20
+ english_labels = {
21
+ "Prompt": "Prompt",
22
+ "1st direction to steer": "1st Direction",
23
+ "2nd direction to steer": "2nd Direction",
24
+ "Strength": "Strength",
25
+ "Generate directions": "Generate Directions",
26
+ "Generated Images": "Generated Images",
27
+ "From 1st to 2nd direction": "From 1st to 2nd Direction",
28
+ "Strip": "Image Strip",
29
+ "Looping video": "Looping Video",
30
+ "Advanced options": "Advanced Options",
31
+ "Num of intermediate images": "Number of Intermediate Images",
32
+ "Num iterations for clip directions": "Number of CLIP Direction Iterations",
33
+ "Num inference steps": "Number of Inference Steps",
34
+ "Guidance scale": "Guidance Scale",
35
+ "Randomize seed": "Randomize Seed",
36
+ "Seed": "Seed"
37
  }
38
 
39
+ # [Rest of the imports and pipeline setup remains the same...]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  css = """
42
  footer {
 
44
  }
45
  """
46
 
47
+
48
+ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
49
  x_concept_1 = gr.State("")
50
  x_concept_2 = gr.State("")
51
  total_images = gr.Gallery(visible=False)
52
 
53
  avg_diff_x = gr.State()
 
54
  recalc_directions = gr.State(False)
55
 
56
  with gr.Row():
57
  with gr.Column():
58
  with gr.Group():
59
+ prompt = gr.Textbox(label=english_labels["Prompt"],
60
+ info="Enter the description",
61
+ placeholder="A dog in the park")
62
  with gr.Row():
63
+ concept_1 = gr.Textbox(label=english_labels["1st direction to steer"],
64
+ info="Initial state",
65
+ placeholder="winter")
66
+ concept_2 = gr.Textbox(label=english_labels["2nd direction to steer"],
67
+ info="Final state",
68
+ placeholder="summer")
69
+ x = gr.Slider(minimum=0,
70
+ value=1.75,
71
+ step=0.1,
72
+ maximum=4.0,
73
+ label=english_labels["Strength"],
74
+ info="Maximum strength for each direction (above 2.5 may be unstable)")
75
+ submit = gr.Button(english_labels["Generate directions"])
76
  with gr.Column():
77
  with gr.Group(elem_id="group"):
78
+ post_generation_image = gr.Image(label=english_labels["Generated Images"],
79
+ type="filepath",
80
+ elem_id="interactive")
81
+ post_generation_slider = gr.Slider(minimum=-10,
82
+ maximum=10,
83
+ value=0,
84
+ step=1,
85
+ label=english_labels["From 1st to 2nd direction"])
86
  with gr.Row():
87
  with gr.Column(scale=4):
88
+ image_seq = gr.Image(label=english_labels["Strip"],
89
+ elem_id="strip",
90
+ height=80)
91
  with gr.Column(scale=2, min_width=100):
92
+ output_image = gr.Video(label=english_labels["Looping video"],
93
+ elem_id="video",
94
+ loop=True,
95
+ autoplay=True)
96
+ with gr.Accordion(label=english_labels["Advanced options"], open=False):
97
+ interm_steps = gr.Slider(label=english_labels["Num of intermediate images"],
98
+ minimum=3,
99
+ value=7,
100
+ maximum=65,
101
+ step=2)
102
  with gr.Row():
103
+ iterations = gr.Slider(label=english_labels["Num iterations for clip directions"],
104
+ minimum=0,
105
+ value=200,
106
+ maximum=400,
107
+ step=1)
108
+ steps = gr.Slider(label=english_labels["Num inference steps"],
109
+ minimum=1,
110
+ value=3,
111
+ maximum=4,
112
+ step=1)
113
  with gr.Row():
114
  guidance_scale = gr.Slider(
115
+ label=english_labels["Guidance scale"],
116
  minimum=0.1,
117
  maximum=10.0,
118
  step=0.1,
119
  value=3.5,
120
  )
121
  with gr.Column():
122
+ randomize_seed = gr.Checkbox(True, label=english_labels["Randomize seed"])
123
+ seed = gr.Slider(minimum=0,
124
+ maximum=MAX_SEED,
125
+ step=1,
126
+ label=english_labels["Seed"],
127
+ interactive=True,
128
+ randomize=True)
129
+
130
+ # Updated examples with English text
131
+ examples = [
132
+ ["flower in mountain", "spring", "winter", 1.5],
133
+ ["man", "baby", "elderly", 2.5],
134
+ ["a tomato", "super fresh", "rotten", 2.5]
135
+ ]
136
 
137
  examples_gradio = gr.Examples(
138
  examples=examples,
139
  inputs=[prompt, concept_1, concept_2, x],
140
  fn=generate,
141
+ outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images,
142
+ post_generation_image, post_generation_slider, seed],
143
  cache_examples="lazy"
144
  )
145
 
146
+ # [Rest of the event handlers remain the same...]
147
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
  if __name__ == "__main__":
149
  demo.launch()