Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -20,42 +20,39 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
20 |
TMP_DIR = "/tmp/Trellis-demo"
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
23 |
-
|
24 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ จ ํ๊ฒฝ ๋ณ์
|
25 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
26 |
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
27 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '
|
28 |
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
|
29 |
-
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
30 |
|
31 |
def initialize_models():
|
32 |
global pipeline, translator, flux_pipe
|
33 |
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
torch.backends.cudnn.allow_tf32 = True
|
41 |
|
42 |
print("Initializing Trellis pipeline...")
|
43 |
pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
44 |
-
"JeffreyXiang/TRELLIS-image-large"
|
|
|
45 |
)
|
46 |
|
47 |
if torch.cuda.is_available():
|
48 |
pipeline = pipeline.to("cuda")
|
49 |
-
|
50 |
-
|
51 |
print("Initializing translator...")
|
52 |
translator = translation_pipeline(
|
53 |
"translation",
|
54 |
model="Helsinki-NLP/opus-mt-ko-en",
|
55 |
-
device=
|
56 |
)
|
57 |
|
58 |
-
# Flux ํ์ดํ๋ผ์ธ์ ๋์ค์ ์ด๊ธฐํ
|
59 |
flux_pipe = None
|
60 |
|
61 |
print("Models initialized successfully")
|
@@ -128,30 +125,29 @@ def translate_if_korean(text):
|
|
128 |
|
129 |
|
130 |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
|
|
|
|
|
|
131 |
try:
|
132 |
-
if pipeline is None:
|
133 |
-
raise Exception("Pipeline not initialized")
|
134 |
-
|
135 |
trial_id = str(uuid.uuid4())
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
if image.size
|
140 |
-
ratio =
|
141 |
new_size = tuple(int(dim * ratio) for dim in image.size)
|
142 |
image = image.resize(new_size, Image.LANCZOS)
|
143 |
-
|
144 |
-
try:
|
145 |
-
processed_image = pipeline.preprocess_image(image)
|
146 |
-
if processed_image is None:
|
147 |
-
raise Exception("Failed to process image")
|
148 |
-
|
149 |
-
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
150 |
-
return trial_id, processed_image
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
except Exception as e:
|
157 |
print(f"Error in preprocess_image: {str(e)}")
|
@@ -452,15 +448,21 @@ if __name__ == "__main__":
|
|
452 |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
453 |
free_memory()
|
454 |
|
455 |
-
# ๋ชจ๋ธ ์ด๊ธฐํ
|
456 |
-
|
457 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
exit(1)
|
459 |
|
460 |
# Gradio ์ฑ ์คํ
|
461 |
-
demo.queue(max_size=2).launch(
|
462 |
share=True,
|
463 |
-
max_threads=4,
|
464 |
show_error=True,
|
465 |
server_port=7860,
|
466 |
server_name="0.0.0.0"
|
|
|
20 |
TMP_DIR = "/tmp/Trellis-demo"
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
23 |
+
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ จ ํ๊ฒฝ ๋ณ์ ์ถ๊ฐ
|
|
|
24 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
25 |
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
26 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # ๋๋ฒ๊น
์ ์ํด 1๋ก ์ค์
|
27 |
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
|
|
|
28 |
|
29 |
def initialize_models():
|
30 |
global pipeline, translator, flux_pipe
|
31 |
|
32 |
try:
|
33 |
+
# CUDA ์ค์
|
34 |
+
if torch.cuda.is_available():
|
35 |
+
torch.backends.cudnn.benchmark = True
|
36 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
37 |
+
torch.backends.cudnn.allow_tf32 = True
|
|
|
38 |
|
39 |
print("Initializing Trellis pipeline...")
|
40 |
pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
41 |
+
"JeffreyXiang/TRELLIS-image-large",
|
42 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
43 |
)
|
44 |
|
45 |
if torch.cuda.is_available():
|
46 |
pipeline = pipeline.to("cuda")
|
47 |
+
pipeline.enable_model_cpu_offload()
|
48 |
+
|
49 |
print("Initializing translator...")
|
50 |
translator = translation_pipeline(
|
51 |
"translation",
|
52 |
model="Helsinki-NLP/opus-mt-ko-en",
|
53 |
+
device=0 if torch.cuda.is_available() else -1
|
54 |
)
|
55 |
|
|
|
56 |
flux_pipe = None
|
57 |
|
58 |
print("Models initialized successfully")
|
|
|
125 |
|
126 |
|
127 |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
128 |
+
if image is None:
|
129 |
+
return None, None
|
130 |
+
|
131 |
try:
|
|
|
|
|
|
|
132 |
trial_id = str(uuid.uuid4())
|
133 |
|
134 |
+
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
|
135 |
+
max_size = 768
|
136 |
+
if max(image.size) > max_size:
|
137 |
+
ratio = max_size / max(image.size)
|
138 |
new_size = tuple(int(dim * ratio) for dim in image.size)
|
139 |
image = image.resize(new_size, Image.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ
|
142 |
+
processed_image = pipeline.preprocess_image(image)
|
143 |
+
if processed_image is None:
|
144 |
+
raise Exception("Failed to process image")
|
145 |
+
|
146 |
+
# ์์ ํ์ผ ์ ์ฅ
|
147 |
+
save_path = os.path.join(TMP_DIR, f"{trial_id}.png")
|
148 |
+
processed_image.save(save_path)
|
149 |
+
|
150 |
+
return trial_id, processed_image
|
151 |
|
152 |
except Exception as e:
|
153 |
print(f"Error in preprocess_image: {str(e)}")
|
|
|
448 |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
449 |
free_memory()
|
450 |
|
451 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ - ์ฌ๋ฌ ๋ฒ ์๋
|
452 |
+
max_attempts = 3
|
453 |
+
for attempt in range(max_attempts):
|
454 |
+
if initialize_models():
|
455 |
+
break
|
456 |
+
print(f"Attempt {attempt + 1} failed, retrying...")
|
457 |
+
free_memory()
|
458 |
+
else:
|
459 |
+
print("Failed to initialize models after multiple attempts")
|
460 |
exit(1)
|
461 |
|
462 |
# Gradio ์ฑ ์คํ
|
463 |
+
demo.queue(max_size=2).launch(
|
464 |
share=True,
|
465 |
+
max_threads=4,
|
466 |
show_error=True,
|
467 |
server_port=7860,
|
468 |
server_name="0.0.0.0"
|