Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -21,10 +21,12 @@ TMP_DIR = "/tmp/Trellis-demo"
|
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
23 |
|
24 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ จ ํ๊ฒฝ ๋ณ์
|
25 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
26 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
27 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'
|
|
|
|
|
28 |
|
29 |
def initialize_models():
|
30 |
global pipeline, translator, flux_pipe
|
@@ -44,15 +46,13 @@ def initialize_models():
|
|
44 |
|
45 |
if torch.cuda.is_available():
|
46 |
pipeline = pipeline.to("cuda")
|
47 |
-
#
|
48 |
-
for param in pipeline.parameters():
|
49 |
-
param.data = param.data.half()
|
50 |
|
51 |
print("Initializing translator...")
|
52 |
translator = translation_pipeline(
|
53 |
"translation",
|
54 |
model="Helsinki-NLP/opus-mt-ko-en",
|
55 |
-
device="cuda"
|
56 |
)
|
57 |
|
58 |
# Flux ํ์ดํ๋ผ์ธ์ ๋์ค์ ์ด๊ธฐํ
|
@@ -74,9 +74,10 @@ def get_flux_pipe():
|
|
74 |
flux_pipe = FluxPipeline.from_pretrained(
|
75 |
"black-forest-labs/FLUX.1-dev",
|
76 |
use_safetensors=True
|
77 |
-
)
|
78 |
-
|
79 |
-
|
|
|
80 |
except Exception as e:
|
81 |
print(f"Error loading Flux pipeline: {e}")
|
82 |
return None
|
@@ -204,7 +205,7 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
204 |
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
|
205 |
|
206 |
# L40S์ ๋ง๊ฒ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ ์กฐ์
|
207 |
-
max_size = 768
|
208 |
if max(input_image.size) > max_size:
|
209 |
ratio = max_size / max(input_image.size)
|
210 |
input_image = input_image.resize(
|
@@ -216,14 +217,14 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
216 |
if torch.cuda.is_available():
|
217 |
pipeline.to("cuda")
|
218 |
|
219 |
-
|
220 |
outputs = pipeline.run(
|
221 |
input_image,
|
222 |
seed=seed,
|
223 |
formats=["gaussian", "mesh"],
|
224 |
preprocess_image=False,
|
225 |
sparse_structure_sampler_params={
|
226 |
-
"steps": min(ss_sampling_steps, 20),
|
227 |
"cfg_strength": ss_guidance_strength,
|
228 |
},
|
229 |
slat_sampler_params={
|
@@ -231,6 +232,10 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
231 |
"cfg_strength": slat_guidance_strength,
|
232 |
}
|
233 |
)
|
|
|
|
|
|
|
|
|
234 |
|
235 |
# ๋น๋์ค ์์ฑ
|
236 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=40)['color']
|
|
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
23 |
|
24 |
+
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ จ ํ๊ฒฝ ๋ณ์
|
25 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
26 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
27 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'
|
28 |
+
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
|
29 |
+
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
30 |
|
31 |
def initialize_models():
|
32 |
global pipeline, translator, flux_pipe
|
|
|
46 |
|
47 |
if torch.cuda.is_available():
|
48 |
pipeline = pipeline.to("cuda")
|
49 |
+
# FP16 ๋ณํ์ ์ ๊ฑฐ (pipeline์ด ์์ฒด์ ์ผ๋ก ์ฒ๋ฆฌ)
|
|
|
|
|
50 |
|
51 |
print("Initializing translator...")
|
52 |
translator = translation_pipeline(
|
53 |
"translation",
|
54 |
model="Helsinki-NLP/opus-mt-ko-en",
|
55 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
56 |
)
|
57 |
|
58 |
# Flux ํ์ดํ๋ผ์ธ์ ๋์ค์ ์ด๊ธฐํ
|
|
|
74 |
flux_pipe = FluxPipeline.from_pretrained(
|
75 |
"black-forest-labs/FLUX.1-dev",
|
76 |
use_safetensors=True
|
77 |
+
)
|
78 |
+
if torch.cuda.is_available():
|
79 |
+
flux_pipe = flux_pipe.to("cuda")
|
80 |
+
flux_pipe.enable_model_cpu_offload() # CPU ์คํ๋ก๋ฉ ํ์ฑํ
|
81 |
except Exception as e:
|
82 |
print(f"Error loading Flux pipeline: {e}")
|
83 |
return None
|
|
|
205 |
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
|
206 |
|
207 |
# L40S์ ๋ง๊ฒ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ ์กฐ์
|
208 |
+
max_size = 768
|
209 |
if max(input_image.size) > max_size:
|
210 |
ratio = max_size / max(input_image.size)
|
211 |
input_image = input_image.resize(
|
|
|
217 |
if torch.cuda.is_available():
|
218 |
pipeline.to("cuda")
|
219 |
|
220 |
+
try:
|
221 |
outputs = pipeline.run(
|
222 |
input_image,
|
223 |
seed=seed,
|
224 |
formats=["gaussian", "mesh"],
|
225 |
preprocess_image=False,
|
226 |
sparse_structure_sampler_params={
|
227 |
+
"steps": min(ss_sampling_steps, 20),
|
228 |
"cfg_strength": ss_guidance_strength,
|
229 |
},
|
230 |
slat_sampler_params={
|
|
|
232 |
"cfg_strength": slat_guidance_strength,
|
233 |
}
|
234 |
)
|
235 |
+
except RuntimeError as e:
|
236 |
+
print(f"Runtime error in pipeline.run: {str(e)}")
|
237 |
+
free_memory()
|
238 |
+
raise e
|
239 |
|
240 |
# ๋น๋์ค ์์ฑ
|
241 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=40)['color']
|