SORA-3D / app.py
aiqtech's picture
Update app.py
a7544c9 verified
raw
history blame
16.3 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline
from typing import *
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# GPU λ©”λͺ¨λ¦¬ κ΄€λ ¨ ν™˜κ²½ λ³€μˆ˜ μˆ˜μ •
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512' # A100에 맞게 증가
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 단일 GPU μ‚¬μš©
os.environ['CUDA_LAUNCH_BLOCKING'] = '0' # A100μ—μ„œλŠ” 비동기 μ‹€ν–‰ ν—ˆμš©
def initialize_models():
global pipeline, translator, flux_pipe
try:
import torch
# L40S GPU μ΅œμ ν™” μ„€μ •
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
print("Initializing Trellis pipeline...")
pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
# λͺ¨λΈμ„ FP16으둜 λ³€ν™˜
for param in pipeline.parameters():
param.data = param.data.half()
print("Initializing translator...")
translator = translation_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device="cuda"
)
# Flux νŒŒμ΄ν”„λΌμΈμ€ λ‚˜μ€‘μ— μ΄ˆκΈ°ν™”
flux_pipe = None
print("Models initialized successfully")
return True
except Exception as e:
print(f"Model initialization error: {str(e)}")
return False
def get_flux_pipe():
"""Flux νŒŒμ΄ν”„λΌμΈμ„ ν•„μš”ν•  λ•Œλ§Œ λ‘œλ“œν•˜λŠ” ν•¨μˆ˜"""
global flux_pipe
if flux_pipe is None:
try:
free_memory()
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
use_safetensors=True
).to("cuda")
# FP16으둜 λ³€ν™˜
flux_pipe.to(torch.float16)
except Exception as e:
print(f"Error loading Flux pipeline: {e}")
return None
return flux_pipe
def free_memory():
"""κ°•ν™”λœ λ©”λͺ¨λ¦¬ 정리 ν•¨μˆ˜"""
import gc
import os
# Python 가비지 μ»¬λ ‰μ…˜
gc.collect()
# CUDA λ©”λͺ¨λ¦¬ 정리
if torch.cuda.is_available():
torch.cuda.empty_cache()
# μž„μ‹œ 파일 정리
tmp_dirs = ['/tmp/transformers_cache', '/tmp/torch_home',
'/tmp/huggingface', '/tmp/cache']
for dir_path in tmp_dirs:
if os.path.exists(dir_path):
try:
for file in os.listdir(dir_path):
file_path = os.path.join(dir_path, file)
if os.path.isfile(file_path):
try:
os.unlink(file_path)
except:
pass
except:
pass
def setup_gpu_model(model):
"""GPU 섀정이 ν•„μš”ν•œ λͺ¨λΈμ„ μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜"""
if torch.cuda.is_available():
model = model.to("cuda")
return model
def translate_if_korean(text):
if any(ord('κ°€') <= ord(char) <= ord('힣') for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
try:
if pipeline is None:
raise Exception("Pipeline not initialized")
trial_id = str(uuid.uuid4())
# 이미지가 λ„ˆλ¬΄ μž‘μ€ 경우 크기 μ‘°μ •
min_size = 64
if image.size[0] < min_size or image.size[1] < min_size:
ratio = min_size / min(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
try:
processed_image = pipeline.preprocess_image(image)
if processed_image is None:
raise Exception("Failed to process image")
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
except Exception as e:
print(f"Error in image preprocessing: {str(e)}")
return None, None
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
return None, None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
try:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
# L40S에 맞게 이미지 크기 μ œν•œ μ‘°μ •
max_size = 768 # L40SλŠ” 더 큰 이미지 처리 κ°€λŠ₯
if max(input_image.size) > max_size:
ratio = max_size / max(input_image.size)
input_image = input_image.resize(
(int(input_image.size[0] * ratio),
int(input_image.size[1] * ratio)),
Image.LANCZOS
)
if torch.cuda.is_available():
pipeline.to("cuda")
with torch.cuda.amp.autocast(): # μžλ™ ν˜Όν•© 정밀도 μ‚¬μš©
outputs = pipeline.run(
input_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 20), # L40Sμ—μ„œ 더 λ§Žμ€ μŠ€ν… ν—ˆμš©
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 20),
"cfg_strength": slat_guidance_strength,
}
)
# λΉ„λ””μ˜€ 생성
video = render_utils.render_video(outputs['gaussian'][0], num_frames=40)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=40)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=20)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
if torch.cuda.is_available():
pipeline.to("cpu")
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
if torch.cuda.is_available():
pipeline.to("cpu")
raise e
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
try:
free_memory()
flux_pipe = get_flux_pipe()
if flux_pipe is None:
raise Exception("Failed to load Flux pipeline")
# L40S에 맞게 크기 μ œν•œ μ‘°μ •
height = min(height, 1024)
width = min(width, 1024)
translated_prompt = translate_if_korean(prompt)
final_prompt = f"{translated_prompt}, wbgmsst, 3D, white background"
with torch.cuda.amp.autocast():
output = flux_pipe(
prompt=[final_prompt],
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
generator=torch.Generator(device='cuda')
)
image = output.images[0]
free_memory()
return image
except Exception as e:
print(f"Error in generate_image_from_text: {str(e)}")
free_memory()
raise e
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
css = """
footer {
visibility: hidden;
}
"""
# Gradio μΈν„°νŽ˜μ΄μŠ€ μ •μ˜
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("""
# Craft3D : 3D Asset Creation & Text-to-Image Generation
""")
with gr.Tabs():
with gr.TabItem("Image to 3D"):
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter your image description...",
lines=3
)
with gr.Row():
txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
generate_txt2img_btn = gr.Button("Generate Image")
with gr.Column():
txt2img_output = gr.Image(label="Generated Image")
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=32, # 예제 수 κ°μ†Œ
cache_examples=False # 예제 캐싱 λΉ„ν™œμ„±ν™”λŠ” Examples μ»΄ν¬λ„ŒνŠΈμ—μ„œ μ„€μ •
)
# Handlers
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
concurrency_limit=1
).then(
activate_button,
outputs=[extract_glb_btn]
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
concurrency_limit=1
).then(
activate_button,
outputs=[download_glb]
)
generate_txt2img_btn.click(
generate_image_from_text,
inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
outputs=[txt2img_output],
concurrency_limit=1,
show_progress=True # 진행 상황 ν‘œμ‹œ
)
if __name__ == "__main__":
import warnings
warnings.filterwarnings('ignore')
# CUDA μ„€μ • 확인
if torch.cuda.is_available():
print(f"Using GPU: {torch.cuda.get_device_name()}")
print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
# 디렉토리 생성
os.makedirs(TMP_DIR, exist_ok=True)
# λ©”λͺ¨λ¦¬ 정리
free_memory()
# λͺ¨λΈ μ΄ˆκΈ°ν™”
if not initialize_models():
print("Failed to initialize models")
exit(1)
# Gradio μ•± μ‹€ν–‰
demo.queue(max_size=2).launch( # 큐 크기 증가
share=True,
max_threads=4, # μŠ€λ ˆλ“œ 수 증가
show_error=True,
server_port=7860,
server_name="0.0.0.0"
)